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The contributions to modern science made by Albert Fin-
stein cannot be fully evaluated in our time. Another lage,
more imaginatively adapted to his concepts of time-spyce,
may see more than abstract logic in his theory of relativity
—a theory which measures distance between events rather
than objects and involves both time and space together. Itiis
1 system based upon relations, not things, and is mathemati-
cally verifiable. The man who, two hundred years after Sir
Isaac Newton's death, changed our understanding of the law
of gravity and gave to physics an entirely new perspective
first published his work on relativity in 1905, when he an-
nounced his so-called restricted theory. In 1915 this work
was amplified with his generalized theory. Since then corrob-
oration of his new principles has been found in abundance,
and now every aspect of the philosophy of science has been
changed as a consequence of his investigations, “The Prob-
lem of Space, Ether and the Field in Physics” is from Albert
Einstein's book, The World As | See It.



THE PROBLEM OF SPACE,
ETHER, AND THE FIELD
IN PHYSICS

ALBERT EINSTEIN

Scientific thought is a development of pre-scientific thought.
As the concept of space was already fundamental in the larter,
we must begin with the concept of space jn pre-scientific
thought. There are two ways of regarding concepts, both of
which are necessary to understanding. The first is that of
logical analysis. It answers the question, How do concepts
and judgments depend on each other? In answering it we are
on comparatively safe ground. It is the security by which
we are so much impressed in mathematics, Buc this security
is purchased at the price of emptiness of content. Concepts
can only acquire content when they are connected, however
indirectly, with sensible experience. But no logical mvestiga-
tion can reveal this connection; it can only be experienced.
And yer it is this connection that determines the cognitive
value of systems of concepts.

Take an example. Suppose an archacologist belonging to 2
later culture finds a text-book of Euclidean geometry without
diagrams. He will discover how the words “point,” “straight-
line,” “plane” are used in the propositions. He will also see
how the latter are deduced from each other. He will even be
able to frame new propositions according to the known rules,
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But the framing of these propositions will remain an empty
word-game for him, as long as “point,” “straight-line,”
“plane,” etc,, convey nothing to him. Only when they do
convey something will geometry possess any real content for
him. The same will be true of analytical mechanics, and in-
deed of any exposition of the logically deductive sciences.

What does this talk of “straight-line,” “point,” “intersec-
tion,” etc., conveying something' to one, mean? It means|that
one can point to the parts of sensible experience o which
those words refer. This extra-logical problem is the essential
problem, which the archaeologist will only be able to sdlve
intuitively, by examining his experience and seeing if he ¢an
discover anything which corresponds to those primary terms
of the theory and the axioms laid down for them. Only in
this sense can the question of the nature of a conceptually
presented entity be reasonably raised,

With our pre-scientific concepts we are very much in the
position of our archaeologist in regard to the ontological
problem. We have, so to spcak, forgotten what features in
the world of experience caused us to frame those concepts,
and we have great difficulty in representing the world of ex-
perience to ourselves without the specracles of the old-estab-
lished conceptual interpretation. There is the further diffi-
culty that our language is compelled to work with words
which are inseparably connected with those primitive con-
cepts. These are the obstacles which confront us when we
try to describe the essential nature of the pre-sciencific con-
cept of space.

One remark about concepts in general, before we turn to
the problem of space: concepts have reference to sensible ex-
perience, but they are never, in a logical sense, deducible from
them. For this reason I have never been able to understand
the quest of the @ priori in the Kantian sense. In any onto-
logical guestion, the only possible procedure is to seek out
those characteristics in the complex of sense experiences to
which the concepts refer.

Now as regards the concept of space: this seemns to presup-
pose the concept of the solid object. The nature of the com-
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plexes and sense-impressions which are probably responsible
for that concept has often been described. The correspond-
ence berween certain visual and tactile impressions, the fact
that they can be continyously followed out through time, and
that the impressions can be repeated at any movement {taste,
sight), are some of those characteristics. Once the concept of
the solid object is formed in connection with the experiences
just mentioned—which concept by no means presupposes thar
of space or spatial relation—the desire to get an intellectual
grasp of the relations of such solid bodies is bound to give
rise to concepts which correspond to their spatial relations.
Two solid objects may touch one another or be distant from
one another, In the latter case, a third body can be inserted
between them without altering them in any way, in the for-
mer not. These spatial relations are obviously real in the
same sense as the bodies themselves. If two bodies are of equal
value for the filling of ome such interval, they will also prove
of equal value for the filling of other intervals. The interval
is thus shown to be independent of the selection of any spe-
cial body 1o fill it; the same is universally true of spatial re-
lations. It is plain that this independence, which is a principal
condition of the usefulness of framing purcly geometrical
concepts, is Not necessary & priori. In my opinion, this con-
cept of the interval, detached as it is from the selection of any
special body to occupy it, is the starting point of the whole
concept of space.

Considered, then, from the point of view of sense experi-
ence, the development of the concept of space seems, after
these brief indications, to conform to the following schema
—solid body; spatial relations of solid bodies; interval; space.
Looked at in this way, space appears as something real in the
same sense as solid bodies.

It is clear that the concept of space as a real thing already
existed in the extra-scientific conceprual world. Euclid’s
mathemarics, however, knew nothing of this concept 35 such;
they confined themselves to the concepts of the object, and
the spatial relations between object_s. Tl?c point, the plaqe.
the straight line, length, are solid objects idealised. All :spatul
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relations are reduced to those of contact (the intersection of
straight lines and planes, points lying on straight lines, erc.),
Space as 1 continuum does not figure in the conceptual system
at all. This concept was first introduced by Descartes, when
he described the point-in-space by its co-ordinates. Here for
the first time geometrical figures appedr, up to a point, a5
parts of infinite space, which is conceived as a three-dimen-
sional continuum, v

The great superiority of the Cartesian treatment of spice
is by no means confined to the fact that it applies analysis
the purposes of geometry. The main point seems rather to e
this:—The geometry of the Greeks prefers certain figurds
{the straighc line, the plane) in geomerrical descriptions;
other figures (e.g., the ellipse) are only accessible to it because
it constructs or defines them with the help of the point, the
straight line and the plane. In the Cartesian trearment on the
other hand, all surfaces are, in principle, equally represented,
without any arbitrary preference for linear figures in the con-
struction of geometry,

In so far as geomeury is conceived as the science of laws
governing the mutual relations of practically rigid bodies in
space, it i5 to be regarded as the oldest branch of physics.
This science was able, as I have already observed, to ger along
without the concept of space as such, the ideal corporezl
forms—point, straight line, plane, length—being sufficient for
its needs. On the other hand, space as 2 whole, as conceived
by Descartes, was absolutely necessary to Newtontan physics.
For dynamics cannot manage with the concepts of the mass
point and the (remporally variable) distance berween mass
points alone. In Newrton’s equations of motion the concept
of acceleration plays a fundamental part, which cannot be
defined by the temporally variable intervals between points
alone, Newton’s accelerarion is only thinkable or definable in
relation to space as a whole. Thus to the geometrical reality
of the concept of space 2 new mertia-determining function
of space was added. When Newton described space as abso-
lute, he no doubt meant this real significance of space, which
made it necessary for him to attribute to it a quire definite
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state of motion, which yet did not appear to be fully deter-
mined by the phenomena of mechanics. This space was con-
ceived as absolute in another sense also; irs inertia-derermin-
ing effect was conceived as autonomous, ie., not to be
influenced by any physical circumsrance whatever; it affected
masses, but nothing affected i,

And yet in the minds of physicists space remained until
the most recent time simply the passive container of all
events, playing no part in physical happenings itself, Thought
only began to take a new turn with the wave theory of light
and the theory of the electromagnetic field of Faraday and
Clerk Maxwell. It became clear that there existed in free
space conditions which propagated themselves in waves, as
well as localised fields which were able to exert force on
electrical masses or magnetic poles broughe to the spot. Since
it would have seemed utterly absurd to the physicists of the
nineteenth century to attribute physical functions or states
to space itself, they invented a medium pervading the whole
of space, on the model of ponderable matter—the ether, which
was supposed to act as ¢ vehicle for electro-magnetic phe-
nomena, and hence for those of light also. The states of this
medium, imagined as constituting the electro-magnetic fields,
were at first thought of mechanically, on the model of the
elastic deformations of rigid bodies. But this mechanical the-
ory of the ether was never quite successful and so the idea of
a closer explanation of the nature of the etheric fields was
given up. The ether thus became a kind of matter whose only
function was to act as a substratum for electrical fields which
were by their very nature not further analysable. The picture
was, then, as follows:—Space is filled by the ether, in which
the material corpuscles or atoms of ponderable matter swim;
the atomic structure of the latter had been secorely estab-
lished by the turn of the century.

Since the reciprocal action of bodies was supposed to be
accomplished through fields, there had also to be a gravita-
tional field in the ether, whose field-law had, however, as-
sumed no clear form at that time. The ether was only ac-
cepted as the seat of all operations of force which male
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themselves effective across space. Since it had been realised
that electrical masses in motion produce a magnevic field,
whose energy acted as a model for inertia, inertia also ap-
peared as a field-action localised in the ether.

The mechanical properties of the ether were at first a
mystery. Then came H. A. Lorentz's great discovery. All the
phenomena of electro-magnetism then known could be ex-
plained on the basis of two asssmptions: thae the ethey is
firmly fixed in space—that is to say, unable to move atlall,
and that electricity is firmly lodged in the mobile elementary
particles, Today his discovery may be expressed as follows:
~Physical space and the ether are only different rerms for the
same thing; fields are physical conditions of space. For if no
particular srate of motion belongs to the ether, there does not
seem to be any ground for introducing it as an entity of a spe-
cial sort alongside of space. But the physicists were still far re-
moved from such a way of thinking; space was still, for them,
2 rigid, homogeneous something, susceptible of no change or
conditions. Only the genius of Riemann, solitary and un-
comprehended, had already won its way by the middle of
last century to a new conception of space, in which space
was deprived of its rigidity, and in which its power to take
part in physical events was recognised as possible. This in-
tellectual achievemnent commands our admirarion all the more
for having preceded Faraday’s and Clerk Maxwell's field
theory of electricity. Then came the special theory of rela-
tivity with its recognition of the physical equivalence of all in-
ertial systems. The inseparableness of time and space emerged
in connection with electrodynamics, or the law of the propa-
gation of light. Hitherto it had been silently assumed that the
four-dimensional continvum of events could be splic up into
time and space in an ob)ectnve manner—l e., that an absolute
significance attached to the “now” in the world of events.
With the discovery of the relativity of simultaneity, space
and rime were merged in a single continuum in the same way
as the three-dimensions of space had been before. Physical
space was thus increased to a four-dimensional space which
also included the dimension of time. The four-dimensional



S8PACE, ETHER, AND THE FIELD IN PHYSICS 477

space of the special theory of relativity is just as rigid and ab-
solute as Newton’s space,

The theory of relativity is a fine example of the fundamen-
tal character of the modern development of theoretical sci-
ence. The hypotheses with which it starts become steadily
more abstract and remote from experience. On the other
hand it gets nearer to the grand aim of all science, which is
to cover the greatest possible number of empirical facts by
logical deduction from the smallest possible number of hy-
potheses or axioms. Meanwhile the train of thought leading
from the axioms to the empirical facts or verifiable conse-
quences gets steadily Jonger and more subtle. The theoretical
scientist is compelled in an increasing degree to be guided by
purely mathematical, formal considerations in his search for
a theory, because the physical experience of the experimenter
cannot lift him into the regions of highest abstraction. The
predominantly inductive methods appropriate to the youth
of science are giving place to tentative deduction. Such a
theoretical structure needs to be very thoroughly elaborated
before it can lead to conclusions which can be compared
with experience. Here too the observed fact is undoubredly
the supreme arbiter; but it cannot pronounce sentence unril
the wide chasm separating the axioms from their verifiable
consequences has been bridged by much intense, hard think-
ing. The theorist has to set about this Herculean task in the
clear consciousness that his efforts may only be destined to
deal the death blow to his theory. The theorist who under-
takes such a labour should not be carped at as “fanciful”; on
the contrary, he should be encouraged to give free rein to
his fancy, for there is no other way to the goal. His is no
idle day-dreaming, but a search for the logically simplest pos-
sibilities and their consequences. This plea was needed in
order to make the hearer or reader more ready to follow the
ensuing train of ideas with attention; ic is the line of thoughe
which has led from the special to the general theory of rela-
tivity and thence to its latest offshoort, the unitary field theory,
In this exposition the use of mathematical symbols cannot be
avoided. ‘
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We start with the special theory of relativity. This theory
is still based directly on an empirical law, that of the constant
velocity of light. Let P be a point in empty space, P one sep-
arated from it by a length do and infinitely near to it. Let 2
flash of light be emitted from P at a time t and reach P’ at a
time t + dt, Then

do? =.GHdt?

If dx,, dx,, dx, are the orthogonal projections of ds, and
imaginary time co-ordinate v/— rct = x, is introduced, then
the above-mentioned law of the constancy of the propagathu
of light takes the form

d.s2 = dX],! + dx; + dx;’ + dxﬂ =

Since this formula expresses a real situation, we may attrib-
ute a real meaning to the quantity ds, even supposing the
neighbouring points of the four-dimensional continuum are
selected in such a way that the ds belonging to them does not
disappear., This is more or less expressed by saying thar the
four-dimensional space (with imaginary time-co-ordinates)
of the special theory of relativity possesses a Euclidean metric.

The fact that such a metric is called Euclidean is connected
with the following. The position of such a metric in a three-
dimensional continuum is fully equivalent to the positions of
the axioms of Euclidean geometry. The defining equation of
the metric is thus nothing but the Pythagorean theorem ap-
plied to the differentials and the co-ordinates.

Such alreration of the co-ordimates (by transformation) is
permitted in the special theory of relativity, since in the new
co-ordinates too the magnitude ds® (fundamenral invariant)
is expressed in the new differentials of the co-ordinates by
the sum of the squares. Such transformations are cailed
Lorentz transformations. _

The leuristic method of the special theory of relativity is
characterised by the following principle:—Only those equa-
tions are admissible as an expression of natural laws which do
not change their form when the co-ordinates are changed
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by means of a Lorentz transformation (co-variance of equa-
tions in relation to Lorentz transformations).

This method led to the discovery of the necessary connec-
tion between impulse and energy, the strength of an electric
and a magnetic field, electrostatic and electro-dynamic forces,
inert mass and energy; and the number of independent con-
cepts and fundamental equations was thereby reduced.

This method pointed beyond itself. Is it true that the equa-
tions which express natural laws are co-variant in relation to
Lorentz transformations only and not in relation to other
wransformations? Well, formulated in that way the question
really means nothing, since every system of equations can be
expressed in general co-ordinates. We must ask, Are not the
laws of nature so constituted that they receive no real simpli-
fication through the choice of any one particular set of co-
ordinates?

We will only mention in passing that our empirical prin-
ciple of the equaliry of inert and heavy masses prompts us
to answer this question in the sfirmative, If we elevate the
equivalence of all co-ordinate systems for the formulation of
natural laws into a principle, we arrive at the general theory
of relativity, provided we stick to the law of the constant ve-
locity of light or to the hypothesis of the objective signifi-
cance of the Euclidean metric at least for infinitely small por-
tions of four-dimensional space.

This means that for finite regions of space the existence
(significant for physics) of a general Riemannian metric is
presupposed according to the formula

ds? =—z-:-guv dx* dx*,
py

whereby the summation is to be extended to all index combi-
nations from 11 to 44.

The structure of such a space differs absolutely radically
in one respect from that of a Euclidean space. The coefficients
gwy are for the time being any functions whatever of the
co-ordinates X to X,, and the structure’ of the space is not
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really determined until these functions guy are really known.
It is only determined more closely by specifying laws which
the metrical field of the guv satisfy. On physical grounds this
gave rise to the conviction that the metrical field was at the
same time the gravitational field.

Since the gravitational field is determined by the configura-
tion of masses and changes with it, the geometric structure of
this space is also dependent on physical factors. Thus accond-
ing to this theory space is—exactly as Riemann guessed—%o
longer absolute; its structure depends on physical influences.
Physwal geometry is no longer an isolated self—contameh
science like the geometry of Euclid.

The problem of gravitation was thus reduced to a mathe-
matical problem: it was required to find the simplest funda-
mental equations which are co-variant in relation to any trans-
formation of co-ordinates whatever.

I will not speak here of the way this theory has been con-
firmed by experience, but explain at once why Theory could
not rest permanently satisfied with this success. Graviration
had indeed been traced to the structure of space, but besides
the gravitational field there is also the electro-magnertic field.
This had, to begin with, to be introduced into the theory as
an entity independent of gravitation. Addirional terms which
took account of the existence of the electro-magnetic field
had te be included in the fundamental equations for the field.
But the idea that there were two structures of space inde-
pendent of each other, the metric-gravitational and the
clectro-magnetic, was intolerable to the theoretical spirit, We
are forced to the belief that both sorts of field must corre-
spond to verified structure of space.

The “unitary field-theory,” which represents jrself as a
mathematically independent extension of the general theory
of relativity, attempts to fulfil this last postulate of the field
theory. The formal problem should be put as follows:—Is
there a theory of the continnum in which a new structural
element appears side by side with the metric such that it
forms a single whole together with the metric? If so, what are
the simplest field Jaws to which such a continuum can be
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made subject? And finally, are these field-laws well fitred to
represent the properties of the gravitational field and the
electro-magnetic field? Then there is the further question
whether the corpuscles {electrons and protons) can be re-
garded as positions of particularly dense ficlds, whose move-
ments are determined by the field equations, At present there
is only one way of answering the first three questions. The
space structure on which it is based may be described as fol-
lows, and the description applies equally to a space of any
number of dimensions,

Space has 2 Riemannian metric. This means that the Eu-
clidean geometry holds good in the infinitesimal neighbour-
hood of every point P. Thus for the neighbourhood of every
point P there is a local Cartesian system of co-ordinates, in
reference to which the metric is calculated according to the
Pythagorean theorem. If we now imagine the length 1 cut
off from the positive axes of these local systems, we get the
orthogonal “local n-leg.” Such a Jocal n-leg is to be found
in every other point P’ of space also. Thus, if a linear element
(PG or P‘G’) starting from the points P or P, is given, then
the magnitude of this linear element can be calculated by the
aid of the relevant local n-leg from its local co-ordinates by
means of Pythagoras’s theorem. There is therefore a definite
mesning in speaking of the numerical equality of the linear
elements PG and P'G”.

It is essential to observe now that the local orthogonal n-
legs are not completely determined by the metric. For we
can still select the orientation of the n-legs perfectly freely
without causing any alteration in the result of calculating the
size of the linear elements according to Pythagoras’s theorem.
A corollary of this is that in 2 space whose structure consists
exclusively of a Riemannian metric, two linear elements PG
and P'G’, can be compared with regard to their magnitude
but not their direction; in psrticu]ar, there is no sort of point
in saying that the two linedr elements are parallel to one 20-
other. In this respect, therefore, the purely metrical {Riecman-
nian) space is less rich in structure than the Euclidean.

Since we are looking for a space which ‘exceeds Riemannian
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space in wealth of structure, the obvious thing is to enrich
Riemannian space by adding the relation of direction or pat-
allelism, Therefore for every direction through P let there
be a definite direction through P, and let this mutual relarion
be a determinate one. We call the directions thus related to
each other “parallel.” Let this parallel relation further fulfil
the condition of angular uniformity: If PG and PK are
directions in P, P'G’ and PK’ the corresponding parallel
rections through P, then the angles KPG and K'P'G’ (me
urable on Euclidean lines in the local system) should be equdl.

The basic space-structure is thereby completely defined.
It is most easily described mathematically ss follows:—In th
definite point P we suppose an orthogonal n-leg with defi
nite, freely chosen orientation. In every other point P’ of
space we so orient its local n-leg that its axes are parallel to
the corresponding axes at the point P. Given the above struc-
ture of space and free choice in the orientation of the n-leg at
one point P, all n-legs are thereby completely defined. In the
space P let us now imagine any Gaussian system of co-ordi-
nates and that in every point the axes of the n-leg there are
projected on to it. This system of n* components completely
describes the structure of space.

This spatial structure stands, in a sense, midway berween the
Riemannian and the Euclidean, In contrast to the former, it
has room for the straighr-line, that is o say % line all of whose
elements are parallel to each other in pairs. The geomerry
here described differs from the Euclidean in the non-existence
of the parallelogram. If at the ends P and G of s length PG
two equal and parallel lengths PP and GG’ are marked off,
PG’ is in general neither equal nor parallel to PG,

The mathematical problem now solved so far is this:—
What are the simplest conditions to which a space-structure
of the kind described can be subjected? The chief question
which still remains to be investigated is this:—To what extent
can physical fields and primary ‘entities be represented by
solutions, free from singularities, of the equations which an-
swer the former question?
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