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Preface 
 

The  new  particle  physics  of  the  past  30  years,  including  electroweak  theory,  
quantum  chromodynamics,  grand  unified  theory,  supersymmetry,  supergravity  
and  superstring  theory,  has  greatly  changed  our  view  of  what  may  have  happened  
in  the  universe  at  temperatures  greater  than  about  1015  K  (100  GeV).  Various  
phase  transitions  may  be  expected  to  have  occurred  as  gauge  symmetries  which  
were  present  at  higher  temperatures  were  spontaneously  broken  as  the  universe  
cooled.  At  these  phase  transitions  topological  defects,  such  as  domain  walls,  
cosmic  strings  and  magnetic  monopoles,  may  have  been  produced.  Various  
types  of  relic  particles  are  also  expected.  These  may  include  neutrinos  with  
small  mass  and  axions  associated  with  the  solution  of  the  strong  CP  problem  
in  quantum  chromodynamics.  If  supersymmetry  exists,  there  should  also  be  
relic  supersymmetric  partners  of  particles,  some  of  which  could  be  dark  matter  
candidates.  If  the  supersymmetry  is  local  (supergravity)  these  will  include  the  
gravitino,  the  spin-~ partner  of  the  graviton.  Insight  may  also  be  gained  into  
the  observed  baryon  number  of  the  universe  from  mechanisms  for  baryogenesis  
which  arise  in  the  context  of  grand  unified  theory  and  electroweak  theory.  
Supersymmetry  and  supergravity  theories  may  have  scope  to  provide  the  particle  
physics  underlying  the  inflationary  universe  scenario  that  resolves  such  puzzles  
as  the  extreme  homogeneity  and  flatness  of  the  observed  universe.  Superstring  
theory  also  gives  insight  into  the  statistical  thennodynamics  of  black  holes.  In  
the  context  of superstring theory,  bold speculations have been  made  as  to  a period  
of  evolution  of  the  universe  prior  to  the  big  bang  ('pre-big-bang'  and  'ekpyrotic  
universe'  cosmology).  

These  matters,  amongst  others,  are  the  subject  of  this  book.  The  book  gives  
a  flavour  of  the  new  cosmology  that  has  developed  from  these  recent  advances  
in  particle  physics.  The  aim  has  been  to  discuss  those  aspects  of  cosmology  that  
are  most  relevant  to  particle  physics.  From  some  of  these  it  may  be  possible  to  
uncover  new  particle  physics  that  is  not  readily  discernible  elsewhere.  This  is  a  
particularly  timely  enterprise,  since,  as  has  been  noted  by  many  authors,  the  recent  
data  from  WMAP  and  future  data  expected  from  Planck  mean  that  cosmology  
may  at  last  be  regarded  as  precision  science  just  as  particle  physics  has  been  for  
many  years.  

xi  
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Chapter Chapter 1 1 

The The standard standard model model of of cosmology cosmology 

1.1 1.1 Introduction Introduction 

The The principal principal concern concern of of this this book book is is the the way way in in which which recent recent particle particle physics, physics, 
including including electroweak electroweak theory, theory, quantum quantum chromodynamics, chromodynamics, grand grand unified unified theory, theory, 
supersymmetry, supersymmetry, supergravity supergravity and and superstring superstring theory, theory, has has changed changed our our standpoint standpoint 
on on the the history history of of the the universe universe when when its its temperature temperature was was greater greater than than 101015 15 K. K. This This 
will will be be studied studied in in the the context context of of the the Friedman-Robertson-Walker Friedman-Robertson-Walker solution solution of of the the 
Einstein Einstein equations equations of of general general relativity. relativity. In In this this chapter, chapter, therefore, therefore, our our first first task task 
is is the the derivation derivation of of the the field field equations equations relating relating the the scale scale factor factor R(t) R(t) that that appears appears 
in in the the metric metric to to the the energy energy density density p p and and the the pressure pressure p p that that characterize characterize the the 
(assumed (assumed homogeneous homogeneous and and isotropic) isotropic) energy-momentum energy-momentum tensor. tensor. This This is is done done 
in in the the following following two two sections. sections. In In section section 1.4 1.4 we we show show how, how, for for a a given given equation equation 
of of state, state, energy-momentum energy-momentum conservation conservation determines determines the the scale scale dependence dependence of of the the 
energy energy density density and and pressure. pressure. The The standard standard solutions solutions for for the the time time dependence dependence of of 
the the scale scale factor factor in in a a radiation-dominated radiation-dominated universe, universe, in in a a matter-dominated matter-dominated universe, universe, 
and and in in a a cosmological cosmological constant-dominated constant-dominated universe universe are are presented presented in in section section I.S; I.S; 
we we give give an an estimate estimate of of the the age age of of the the universe universe in in the the matter-dominated matter-dominated case case in in 
section section 1.6. 1.6. In In section section 1.7, 1.7, we we present present the the evidence evidence that that there there is, is, in in fact, fact, a a non­non­
zero zero cosmological cosmological constant constant and and discuss discuss why why its its size size is is so so difficult difficult to to explain. explain. The The 
discussion discussion of of phase phase transitions transitions and and of of relics relics that that is is given given in in later later chapters chapters also also 
requires requires a a description description of of the the thermodynamics thermodynamics of of the the universe. universe. So So in in the the following following 
two two sections sections we we describe describe the the equilibrium equilibrium thermodynamics thermodynamics of of the the expanding expanding 
universe universe and and derive derive the the time time dependence dependence of of the the temperature temperature in in the the various various epochs. epochs. 
In In section section l.lO, l.lO, we we discuss discuss briefly briefly the the 'recombination' 'recombination' of of protons protons and and electrons electrons 
that that left left the the presently presently observed observed cosmic cosmic microwave microwave background background radiation. radiation. Finally, Finally, 
the the synthesis synthesis of of the the light light elements elements that that commenced commenced towards towards the the end end of of the the first first 
three three minutes minutes is is discussed discussed in in section section 1.11. 1.11. The The consistency consistency of of the the predicted predicted 
abundances abundances with with those those inferred inferred from from the the measured measured abundances abundances determines determines the the 
so-called so-called baryon baryon asymmetry asymmetry of of the the universe, universe, whose whose origin origin is is discussed discussed at at length length 
in in chapter chapter 4. 4. 

DOl: DOl: 10.1201/9780367806637-1 10.1201/9780367806637-1 1  



2  The  standard  model  of cosmology  

1.2  The  Robertson-Walker  metric  

The  standard  description  of  the  hot  big  bang  assumes  a  universe  which  is  
homogeneous  and  isotropic  with  a  metric  involving  a  single  function  R(t),  
the  'scale  factor'  (or  'radius'  of  the  universe).  The  appropriate  metric  is  the  
Robertson-Walker  metric  

ds2=dt2-R2(t)(  dr2  +r2 d02 +r2 sin2 (}dt/>2)  (1.1) 
1- kr2  

where  the  (time  and  spherical  polar)  coordinates  (t,  r,  (),  tP),  called  the  'comoving'  
coordinates,  are  the  coordinates  of  an  observer  in  free  fall  in  the  gravitational  
field  of  the  universe.  The  parameter  k  takes  the  values  -I, 0,  I  corresponding  
to  a  universe  which  has  spatial  curvature  which  is  negative,  zero  or  positive,  
respectively.  (This  can  be  seen  from  the  curvature  scalar  derived  from  the  second  
equality  of  (1.30)  with  a  change  in  sign  for  Euclidean  rather  than  Minkowski  
space.)  Units  have  been  chosen  in  which  the  speed  of  light  c  is  I.  

An  immediate  use  of  this  metric  is  to  calculate  the  size  of  regions  of  the  
universe  that  have  been  in  causal  contact  (in  the  sense  that  there  has  been  the  
possibility  of causal  influence  occurring  between  points  within  the  region  at  some  
time  between  the  big  bang  at  I  =  0  and  time  t).  Causal  influences  cannot  occur  
over  distances  greater  than  the  (proper)  distance  dH(I)  that  light  has  been  able  to  
travel  from  the  the  big  bang  at  I  =  0  to  the  time  t  being  studied.  This  distance  
is  called  the  'particle  horizon'.  Without  loss  of  generality,  consider  emission  of  
a  light  signal  from  coordinate  (r,  0,  tP)  at  I  =  0  to  coordinate  (0,  (),  tP)  at  time  t  
along  the  (radial)  geodesic  with  ()  and  tP  constant.  (It  may  be  checked  that  this  is  
indeed  a  geodesic  by  using  the  coefficients  of affine  connection  given  in  the  next  
section  (exercise  I).)  For  a  light  beam,  ds2  = 0  and  we  have  

dt2  dr2  
(1.2) 

R2(t)  =  l-kr2·  

Thus,  the  largest  value  of r  at  t  = 0  to  be  in  causal  contact  with  r  =  0  at  time  I  is  
given  implicitly  by  

f'  dt'  ('  dr'  
(1.3) lo  R(t')  =  lo  JI  - kri2  

This  equation  determines  the  particle  horizon.  The  proper  distance  to  the  particle  
horizon  at  time  I  is  

r  dr'  
dH(t)  =  R(I)  la  ~kri2 

t  dt'  
(1.4) =  R(/)  la  R(t')·  



The  Robertson-Walker  metric  3  

We  shaH  discuss  the  time  dependence of  the   scale  factor  R(t)  in  the  next  section.  
Equation ( 1.4) then allows  us to calculate the particle horizon.  For example, when  

R(t)  ex  t2/ 3  (1.5)  

as  is  the  case  for  a  matter-dominated universe,   we  get  

dH(t)  =  3t  (1.6)  

and  for  a radiation-dominated  universe   in  which  

R(t)  ex  t l / 2  (1.7)  

we  get  

dH(t)  =  21.  (1.8)  

For an   inflationary  universe, such   as  will  be  discussed  in  chapter 7,   

R(t)  ex  eHI  ( 1.9)   

with  H  approximately constant,   and  then  

I 
dH(t)  =   

H  (eHI  - I).  ( I.lO)   

The  Robertson-Walker  metric  also  aHows  us  to  calculate  the  redshifting  of  
light  from  distant  objects.  Consider  light,  travelling  on  a  radial  geodesic,  being  
received  at  r  =  0  at  (around)  the  present  time  t  =  to  from  a  distant  galaxy  at  
r  = r\.   Suppose  that  two  adjacent crests   of a   light  wave  are  received  at  t  =  to  
and  t  =  to  +  ~to having  been  emitted  from  the  distant  galaxy  at  t  =  1\  and  
t  =  1\  + M\.   Equation  (1.3)  applies  but  with  appropriate  modifications  to  the  
limits  of integration.   Thus,  

1'0 
 dt  ('I  dr 
 
(1.11 )   

I.  R(t)  =  Jo  JI - kr2  

and  

1'0+6 10  dt  ('I  dr  
( 1.12)   

1.+61.  R(t)  = Jo   .JI  - kr2  

Subtracting gives   

1'0+6 10  dt  1'0  dt 
( 1.13)   

1.+61.  R(t)  

1
=  I.  R(t)  

so  that  

110+610  ~ =  '.+6'•  ~. ( 1.14)  
10  R(t)  I.  R(t)  



4  The  standard  model  of cosmology  

Because the   variation of  R(I) on   the  time scale  of  an  electromagnetic wave   period  
is  very  small,  this  equation may   be  approximated by   

Ato  All  
--=-- (1.15) 
R(to)  R(II)  

But  Alo  and  Atl  are  the  times  between  adjacent crests;   in  other  words, they  are  
the  periods of  the  waves.  Thus,  the  waves  have  frequencies  

and  (1.16) vo  =  Alo  VI  =  All  

respectively  and,  in  units  where  c  =  I, wavelengths   

Aa  =  AIO  and  AI  = All   (1.17)  

respectively.  The redshift  is   usually  defined  by  

Aa-AI  
Z=  ( 1.18)   

Al  

and,  from  (1.15),  we  conclude that   

1  _  R(IO)  
(1.19)  +Z - R(II)'  

Equations (1.19)  and  (1.17),  reinterpreted  in   terms of  photons, mean   that a  photon   
emitted  at  time  1I  undergoes  a  redshifting  of  its  wavelength  as  the  universe  
expands, such   that  its  wavelength at   time  10  is  increased  by  a  factor  R(IO)/ R(I).  
Since  the  momentum  (or  energy)  of the   photon  is  inversely  proportional  to  its  
wavelength,  the  momentum  (or  energy)  of the   photon  is  reduced  by  a  factor  
R(I)/ R(lo)  as  a  result  of the   expansion  of the   universe.  This  is  often  expressed  
as  energy of  photons being  redshifted  away.   

When  III  - tol  is  not  too  large,  we  can  make  the  expansion  

R(I»  =  R(to)  + (11   - 'o)R(lo) +   !(I\  - '0)2R(lo)  + ..  .   
=  R(lo)(1  + Ho(tl   -10) - !qOHJ(11  - 10)2  + ... )  (1.20)  

where  

= 
R(tO)  

(1.21) 
Ho  R(lo)  

is  the  present  value  of the   Hubble  parameter  and  qO  is  the  present  deceleration  
parameter  

R(IO)  _  R(IO)R(IO)  
(1.22) 

qO  = - R(lo)HJ  ­ R(tO)2  

The  redshift  may  also be   expanded in   powers of  I)   - 10:  

1+ Z =  (1   + Ho{tl   - (0)  - ~qOHJ(11 - 10)2  + ... )-1  (1.23)  
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leading to   
qO)  2  2  

Z  = Ho(to   - td +  (  I  + 2"   Ho  (to  - t)  + ....   ( 1.24)  

Since  z  is  the  physically  measurable  quantity,  it  is  useful  to  invert  (1.24).  For  
small  z  

10  - I)  = ~o  [z  - (I  + ~qo)  z2  + ...  ].  (1.25)  

Then,  after expanding   1/ R(t) in   (1.11)  in  powers of  t  - to,  we  may  determine rl   
as  a  function  of z.  Expanding (1.11)  gives   

R:tO) 	 [(to  - td +  ~Ho(to  - t)2 +  ..  -]   =  rl  + O(r~).  (1.26)  

Thus,  in  terms of  the  redshift,  

rl=  )  [  R(to)Ho  Z - 2"(1 I 	  + qo)z2  +  ....  ]  (1.27) 

We  shall  use  this  result  in  section  1.7  to  calculate  the  'luminosity  distance'  of a  
(supernova) source   as  a  function  of the  redshift.  

1.3 	 Einstein equations  for   a  Friedmann-Robertson-Walker  
universe  

It is   straightforward to calculate the coefficients of  affine connection for the  metric  
(1.1).  The non-zero  components  are   

oR.  R  .  
r ij  = - /igij  rjo  =  /i 8ij  = rOj   (1.28)  

.  
rJk  = 1   'I  

19'  (Bkglj  + Bjglk   - Blgjk). 	 (1.29)  

Here  xi, i   =  1,2, 3,   denotes  the  (spatial)  coordinates  (r, 8,  r/J).   Equation  (1.29)  
is  just  the  coefficients  of affine   connection  for  the  three-dimensional  subspace  
(r, 8,  r/J).   It is   also  straightforward  to  calculate  the  Ricci  tensor  RJJ.II  from  the  
cofficients of  affine  connection (exercise  2).   It has   non-zero components   

R  R  R2  
Roo  = -3/i   and  Ri} [ 2k] 

 =  - R  + 2  R2  +  R2  gij.  (1.30)  

The corresponding  curvature  scalar  is   

= R 	 R2  k ]  
IR  ==  gJJ.1I  Rj.l.1I  -6 [ /i +  R2   + R2   •  ( 1.31)  
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The  Einstein  equations for  the   Robertson-Walker metric,   usually  referred to   
as  the  Friedman-Robertson-Walker (FRW)   universe,  are  

RJ-L\I  - !1RgJ-L1I  =  87rGN TJ-LII  + Ag/LII  ( 1.32)  

where  G N  is  the  Newtonian gravitational  constant,   TJ-LIJ  is  the  energy-momentum  
tensor  and  we  are  including  a  cosmological  constant  A.  For a   perfect  fluid  with  
energy density   P and   pressure  p, the   non-vanishing components  are   

Too  =  p  and  T;j  = - pfJij •   ( \.33)  

The corresponding  Einstein  equations  are,   from  the  OO-component,  

(!!.) 
.  2 

R 
 +.!....  =  8rrGN p   +  A  ( 1.34)  

 R2  3  3  

usually  referred  to  as  the  'Friedmann' equation,  and,   from  the  ij-components,  

R  2/i  + (R)2  /i   + R2  k 
 = -8rrG  N P  + A.   (1.35)  

Subtracting (1.35)  from   (1.33) gives   the  equation for   R  

R  4rrGN  A  
- =  ---(p+3p)+- (1.36) 
R  3  3'  

In  the  case  A  =  0,  this  equation  implies  that  R <   0  for  all  times I.  Then,  the  
present positive   R implies  that  R was  always  positive  and,  therefore,  that  R  was  
always  increasing.  Consequently,  ignoring  the  effects  of quantum   gravity,  there  
was  a  past time   when  R  was  zero-the moment  of  the   'big bang'.   

Returning to  the   Friedmann equation  (1.34)  with   zero cosmological  constant,  
the  universe  is  spatially  flat  when  

2  3H =  ( 1.37)  P =   Pc  
3M~H2 =  8rrGN  

where  H  is  the  Hubble parameter,   

H=!!.. ( 1.38)   
R  

and  Mp  is  the  reduced  Planck  mass given   by  

2  I  m~M  ----­ ( 1.39)  
p  - 8rrGN  - 8rr 
 

A positive   value  of the  acceleration  R can  only  arise  if  A  is  positive. 
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where  m p   is  the  Planck  mass.  and  

Mp::::  2.44  x  1018  GeV  mp  ::::  1.22  x  1019  GeV.  (1.40)  

Since  the  Hubble  parameter varies   with  time.  so  does  pc.  The density   parameter  
n is   defined  as  

n= £..   ( 1.41)  
Pc  

and  measures  the  density  as  a  fraction  of the   'critical'  density  Pc.  The  current  
value  of n,  denoted by  no.   has  a  value [I]   

no  = 1.02   ± 0.02.   (1.42)  

1.4  Scale factor   dependence  of the  energy  density  

There is  also conservation of  the energy-momentum tensor to take into account:  

DIITILII  =  0  (1.43)  

where  
D).. VI'   = a)..  VI'   + rr p  vP  (1.44)  

is  the  action  of the   covariant derivative   D)..  on  a  contravariant  index.  The  J.L  =  0  
component of  (1.43)  yields  (exercise   3)  

.  R  
P +  3(p +  p)"R   = o.  (1.45)  

It is   easy  to  see  that this   is  just the   first  law  of thermodynamics   

dE+pdV=O  (1.46)  

for  a  comoving volume   V  ex  R3(t).  
The  energy  density  p  may  be  related  to  the  scale  factor  R(t) once   we  have  

the  equation of  state.  If this  is  of the   form  

p=wp  (1.47)  

then  ( 1.45) leads   to  
p  ex  R-3(l+w).  (1.48)  

In  particular.  for  w  =  ~. corresponding to   radiation  (massless  matter)  

p  ex  R-4  _1 radiation  P  - 'JP·  (1.49) 

For w   =  O.  corresponding to   massive  matter,  

p  ex  R-3  matter  p=O.  (1.50)  
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Equation  (t .50)  may  be  understood  as  a  constant  number  of  massive  particles  
occupying  a  volume  expanding  as  R3 (t)  as  the  universe  expands.  Equation  (t .49)  
may  be  understood as the  number density  of photons (or other massless particles)  
decreasing  as  R-3(t),  as  for  massive  matter  but,  in  addition,  the  energy  of  each  
photon  decreasing  as  R-I(t)  because  of  the  redshifting  of  the  photon  energy  
discussed  in  section  1.2.  Another  interesting  case  is  w  =  -I, which  gives  

p  = constant  p=  -po  (1.51  )  

This  may  be  interpreted  as  vacuum  energy  and  allows  us  to  incorporate  the  
cosmological  constant  into  the  discussion  without  introducing  it  explicitly.  if  we  
wish.  

1.5  Time  dependence  of the  scale   factor  

It  is  easy  to  solve  the  Friedmann  equation  (t .34)  in  the  case  of zero  cosmological  
constant  and  k  =  0,  a  spatially  flat  universe.  Both  of  these  assumptions  are  
always  good  approximations  for  sufficiently  early  times  because,  as  discussed  
in  section  1.4,  p  ex  R-4  for  radiation  domination  and  p  ex  R-3  for  matter  
domination.  Consequently,  for  a  'big-bang'  universe  with  R  -+  0  as  t  -+  0,  
the  J1rGNP  tenn  in  (1.34)  becomes  more  important  than  the  k/R2  or  A/3  
tenns.  With  the  energy  density  p  given  by  (t .48), the  solution  of (t.34) (provided  
w  #  -I) is  

R(t)  ex  t-~(\+W). (t .52)  

In  particular,  

R  ex  tl/2  and  H  =  !t- I  for  radiation  domination  (1.53)  

and  

2-1 R  ex  t2/3  and  H  =  Jt  for  matter  domination.  (1.54)  

However,  if at  some  stage  in  the  history  of the  universe  the  cosmological  constant  
is  (positive  and)  large  enough  to  dominate  over  the  energy  density  and  curvature  
tenns  in  (1.34),  then  the  Friedmann  equation  has  the  solution  

fA, 
R(t)  ex  eV'I  .  (1.55)  

This  is  the  de  Sitter  universe.  

1.6  Age  of the   universe  

We  shall  estimate  the  age  of  the  universe  in  the  case  A  =  o.  We  shall  also  
assume  a  matter-dominated  universe  for  the  calculation.  This  is  a  reasonable  
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approximation  because.  as  can  be  seen  from  section  1.8.  the  universe  was  matter­
dominated  for  most  of its   history.  First.  rewrite  the  Friedmann  equation  (1.34)  in  
tenns  of the   value  Po  of the   energy  density  p  today.  From  (1.50).  

~ =  (:0)-3  (1.56) 

Thus.  the  Friedmann  equation  may  be  written  as  

•  2  

(~) + ~ =  8TfGN  Po  Ro.  ( 1.57)  
Ro  R5  3  R  

Next  rewrite  this  in  tenns of  the  present  value  00 of  the   density  parameter (1.41):   

Po  
- (3/S1rGN)Ho 2'  ( 1.58)  

00 - 

Then.  at  t  =  to.  (1.57)  gives  

k  8TfGN  2  2  
2  = --Po- Ho  = Ho(Oo-l)   (1.59)  
Ro  3  

where  the  last  equality  employs  (1.58).  Thus.  the  Friedmann  equation  may  be  
written  as  

( R) •  2   - + 2 = 2 O Ho (00 - I)  OoHo-.  R
 (1.60) 

Ro  R  

This  may  be  rewritten  in  tenns of  the   variable  

R  
(1.61 )   

x  ==  Ro  

as  
x2  + HJ(Oo   - 1)  =  OoHJx- 1  (1.62)  

with  solution  
1  r  dx' 

10 (1.63)  
t  =  Ho   JOo(x H  - I)  + 1   

In  particular.  today.  when  R  =  Ro.  x  has  the  value  I  and  the  current  age  of the   
universe  is  

If'  dx  (1.64) 
to  = Ho   10  JOo(x-1  - 1)  + 1   

We  see  that  to  '"  HO-I  with  the  precise  value  depending  on  the  value  of 00.   For  
example.  for  an  exactly  flat  universe  (which  is  not  consistent  with  observations)  
00 =  I   and  to  = jHOl.   It  is  usual  to  write  HOI  in  the  fonn  

HO-I:::  h-19.78  x  109  yr  (1.65)  
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where  the  parameter h   is  measured  to  have  the  value  

h  = 0.72 ±   O.OS.  (1.66)  

Thus,  the  present age  of  the   universe  is  

to  '" 10 10  yr.  (1.67)  

1.7  The  cosmological  constant  

In  1917,  attempting  to  apply  his  general  theory  of relativity   (GR)  to  cosmology,  
Einstein  sought  a  static  solution  of the   field  equations  for  a  universe  filled  with  
dust  of constant  density   and  zero  pressure.  The  general  static  solution  of (1.34)   
and (1.36)   has  

p=  ~ (_A _ _ p)  (1.68) 
3  41£GN  

and  
k  81£GN  A  
-=--p+- (1.69) 
R2  3  3·  

With  zero  cosmological  constant (A   =  0),  the  only solution   of these   equations,  
apart from   an  empty,  flat  universe,  requires that   either the   energy density   p  or the   
pressure  p  is  negative.  It was   this  unphysical  result  that  led  him  to  introduce  the  
cosmologicalterm.  Then  the  solution  for pressureless  dust  is   

A  
(1.70) p  = 41£GN   

and  
k  

R2  =A.  (1.71) 

Assuming  that  p  is  positive requires   that  A  is  positive,  so  that  

k  = +1  (1.72)  

and  
I  

R  = ../K.   ( 1.73)   

Hence,  the  universe is  closed  and   has  the  geometry of  S3  with  volume  V  and mass   
M  given  by  

v =  1£ 21£2 R3   = 21£2 A  -3/2  ( 1.74)   M  =  2GN"/x.  

A  non-zero  cosmological  constant  also  allows  non-trivial  static  (de  Sitter)  
solutions  of the   Einstein  field  equations  with  no  matter  (p  =  0  =  p) at   all.  It  
was,  therefore,  a  considerable  relief  in  the  1920s  when  the  redshifts  of distant   
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galaxies were   observed, the   presumption of  a  static  universe could  be  abandoned   
and there   was  no  need for  a   cosmological constant.   

However,  anything that   contributes to   the  energy  density  of the   vacuum  (p)  
acts  just  like  a  cosmological  constant.  This  is  because  the  Lorentz  invariance  
of the   vacuum  requires  that  the  energy-momentum tensor   in  the  vacuum  (TJlv )  
satisfies  

(TJlv )  = (p)gJlv,   ( 1.75)  

Then,  by  inspection  of (1.32),  we  see  that the   vacuum  energy density   contributes  
81l' G  N (p)  to  the  effective  cosmological constant   

Aeff  =  A  + 81l'GN(P)·  (1.76)  

Equivalently,  we  may  regard the  cosmological  constant  as   contributing A/81l'G  N  
to  the  effective  vacuum energy  density   

A  
Pvac  = (p)  + 81l'GN   =  AeffM~. ( 1.77)  

Thus,  a  cosmological  constant  is  often  referred  to  as  'dark  energy',  not  to  be  
confused  with  dark  matter  which  contributes  to  the  non-vacuum  energy density   
(and  has  zero pressure).   

A  priori,  in  any  quantum  theory  of gravitation,   we  should  expect the   scale  
of the   vacuum  energy  density  to  be  set  by  the  Planck  scale  Mp.  Since  A  has  
the  dimensions  of M2,   it  follows  that  we  should have   expected that   A/M~ ....  I.  
We  shall  see  that,  in  reality,  the  scale  of any   such  energy  density  must  be  much  
smaller.  We  noted  in  section  1.5  that  the  effect of  the   cosmological  constant  is  
negligible  at  sufficiently  early  times,  because  the  energy  density  p  scales  as  a  
negative  power of  R   for radiation   or matter  domination.   Thus,  the  most  stringent  
bounds  arise  from  cosmology when   the  expansion of  the  universe  has  diluted  the  
matter energy  density  sufficiently.   From the   observation that   the  present universe   
is  of at  least of  size  Hr; I, we   may conclude  that   

IAeffl  $  3H6  (1.78)  

where  
HO-I",  1010  yr ....   1042  GeV- 1  ( 1.79)  

from  (1.67).  Then,  in  Planck units,   

IAeffl  <  10-120  (1.80) 
M2 p   '" 

For  many  years,  this  tiny  ratio  was  taken  as  evidence  that  the  cosmological  
constant  is  indeed  zero.  However,  during  the  past  few  years,  evidence  has  
accumulated that   A  is,  in  fact,  non-zero.  
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The  first evidence  suggesting  this  came  from   measurements of  the  redshifts  
of type   la  supernovae.  Such  supernovae  arise  as  remnants  of the   explosion  of  
white dwarfs   which accrete  matter  from   neighbouring stars.   Eventually  the  white  
dwarf mass   exceeds  the  Chandrasekhar limit   and  the  supernova  is  born  after  the  
explosion.  The  intrinsic  luminosity  of such   supernovae  is  considered  to  be  a  
constant.  That  is,  they  are  taken  as  standard  candles  and any  variation  in  their  
apparent  luminosity  as  measured  on  earth  must  be  explicable  in  terms  of their   
differing distances  from   the earth.   In  a  Euclidean space,  the   apparent luminosity  1   
of a  source  with  intrinsic luminosity   L  at a   distance  D from   the  observer is  given   
by  

1=  _L  (1.8 I)  
41rD2·  

We  may,  therefore,  define  the  'luminosity  distance'  DL  of a   source  from  the  
observer by   

(1.82) 
DL  ==  J4~" 

In  GR  we  must  be  more  careful.  So consider   the  circular  mirror,  area  A,  of a   
telescope at  the  origin,  nonnal  to   the  line  of sight to   a  source at  r   I. Light  emitted   
from  the  source  at  time  11  and  arriving  at  the  mirror  at  time  10  is  bounded by   a  
cone with   solid  angle  

A  
w=---:"""":"  (1.83) 

41r R(lo)2rl   

as  measured in   the  locally inertial   frame  at  the  source.  The emitted  photons  have   
their energy  redshifted  by   a  factor  

R(tl)  
=  (1.84) 

R(IO)  1+ z   

as explained  in   section  1.2,  (see (I.  I 8». Also,  photons  emitted  at  time   intervals of   
1511  reach the   mirror at   time  intervals 1510   =  1511  R(IO)/ R(II). Thus,   the  total  power  
P  received at  the   mirror is   given  by  

P  = L   (R(II»)2 (1.85) R(to)  w  

and  the  apparent luminosity  by   
P  

1 =   A.  (1.86)  

Then, using  (1.27),   the  luminosity distance   defined  in  (1.82) is   

DL  = Ha l (1  + z)   [z  - ~(l +QO)z2  + ... ]  (1.87)  

= Ho  I  [I z +   2(1  - qo)z 2]  +...  .  
 (1.88)  
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Figure  1.1.  Hubble  diagram  giving  the  effective  magnitude  versus  redshift  for  the  
supernovae  in  the  primary  low-extinction  subset.  The  full  line  is  the  best-fit  flat-universe  
cosmology  from  the  low-extinction  subset.  the  broken  and  dotted  lines  represent  the  
indicated  cosmologies.  

Hence.  for  nearby  supernovae  the  luminosity  distance  is  proportional  to  the  
redshift  of  the  source.  

Astronomers  measure  the  apparent  magnitude  m  of  the  various  supernovae  
sources.  The  difference  m - M.  where  M  ....  -19.5.  is  the  (assumed  constant)  
intrinsic  magnitude  of the  source.  is  just  the  logarithm  of the  luminosity  distance.  
So  the  apparent  magnitude  is  predicted  to  be  linear  in  In;z  for  small;z.  This  is  
consistent  with  the  data  for  z  ;S  0.1.  see  figure  1.1  taken  from  [2].  For  more  distant  
supernovae  the  linear  relationship  between  DL  and  ;z  is  distorted  by  quadratic  
terms  depending  on  the  present  deceleration  parameter  qO  of  the  universe.  The  
data  for  0.7  ;S  ;z  ;S  1  do  display  such  a  distortion.  see  figure  1.1  [2].  

For  an  FRW  universe.  it  follows  from  (1.36)  and  the  definition  (1.22)  of  qO  

that.  in  general.  the  deceleration  may  be  written  as  

qO  =  ! L(I  +  3Wi)S'2i  (1.89)  

for  a  universe  with  components  labelled  by  ;  having  energy  density  Pi  and  
pressure  Pi  ==  WjPi;  here  S'2j  ==  Pi/Pc  where  Pc  ==  3HJ/87rGN  is  the  
critical  density.  In  particular.  for  a  universe  with  just  (pressureless)  matter  and  
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Figure Figure 1.21.2 . .  68%, 68%,  90%, 90%,  95%, 95%,  and and  99% 99%  confidence confidence  regions regions  for!lm for!lm  and and  !lA. !lA.  

a a  cosmological cosmological constant, constant,   we we  get get  

qO qO  = =  !!lm !!lm  -!lA -!lA  ( ( 1.90) 1.90)   

where!lm where!lm  == ==  Pm/Pc Pm/Pc  is is  the the  matter matter  contribution contribution  and and  !lA !lA  == ==  Pvec/Pc Pvec/Pc  = = AA eetf/3HJ. tf/3HJ.  
As As  noted noted  previously, previously,  a a  negative negative  value value  of of qO, qO,   corresponding corresponding  to to  an an  accelerating accelerating  
universe, universe, can can  only only  arise arise   with with  a a  positive positive cosmological cosmological  constant. constant.   The The data data  shown shown   in in  
figures figures  1.1 1.1  and and  1.2 1.2  taken taken  from from  [2] [2]  suggest suggest  that that this this   is is  indeed indeed  the the  case. case.  

The The  determination determination  of of !lm !lm   and and  !lA !lA  requires requires  at at  least least  one one  further further  input. input.  The The  
recent recent data data  on on   the the  temperature temperature anisotropies anisotropies  of of  the the  cosmic cosmic  microwave microwave  background background  
provide provide just just  such such  a a   constraint. constraint.  Photons Photons  originating originating at at   the the  'last 'last scattering scattering  surface', surface',   
when when  matter matter  and and  radiation radiation  decouple decouple  (see (see  section section  I. I. 10), 10),  having having  a a  redshift redshift  z z  ..... .....  
1300, 1300,  are are  seen seen  now now  as as  the the  microwave microwave  background. background.  Quantum Quantum  fluctuations fluctuations  in in  
the the  early early  universe universe  give give  rise rise  to to  fluctuations fluctuations  in in  the the  energy energy  density density  of of the the   radiation radiation  
and and  these these  appear appear  as as  temperature temperature  fluctuations fluctuations  in in  the the  microwave microwave  background background  (see (see  
section section  7.7). 7.7).  These These  fluctuations fluctuations  may may  be be  analyzed analyzed by by   multipole multipole  moments, moments,  labelled labelled  
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by  I,  and  are  characterized  by  their  power  spectrum.  The  multi pole  number  lpeak  
of the first peak in the power spectrum is determined by the total  matter content  of  
the  universe.  In  fact,  lpeak  '"  22000,  where  00  ==  po/Pc  measures  the  total  energy  
density  PO  relative  to  the  critical  density.  The  measured  position  of  the  first  peak  
yields  the  value  (1.42).  Thus,  for  a  universe  with  just  matter  and  a  cosmological  
constant,  we  get  

Om  +  OA  '"  I.  (1.91)  

When  this  result  is  combined  with  the  supernova  and  other  data,  it  is  found  that  

Om  '"  0.3  OA  '"  0.7.  (  1.92)  

In  Planck  units,  this  means  that  

Aeff  =  PvIM:  _  n  Pc  '"  0 8  10-120 
2  4  - UA  4  - .  x  .  ( 1.93)  

Mp  Mp  Mp  

There  is  currently  no  known  explanation  of  this  extremely  small  number.  It  

corresponds  to  ~t: ~ 10-3  eV.  It  is  generally  believed  that  the  particle  physics  
vacuum  is  the  minimum  of  an  effective  potential  in  which  the  electroweak  gauge  
symmetry  SU(2)L  x  U(I)y  is  spontaneously  broken  (see  section  2.5).  The  value  
of the  effective  potential  at  this  minimum  (p)  has  no  effect  on  the  particle  physics.  
By  adding  a  constant  Vo  to  the  tree-level  potential  (2.93),  it  is  easy  to  arrange  that  
the  potential,  including  any  radiative  and  temperature-dependent  corrections,  has  
any  desired  value  at  the  minimum.  However,  to  do  so  requires  the  fine  tuning  of  Vo  
to  ensure  that  the  value  (1.93)  is  obtained  and  it  is  this  fine  tuning  that  is  regarded  
as  unnatural  and  for  which  an  explanation  is  sought.  The  obvious  first  approach  
to  the  problem  is  to  seek  a  symmetry  that  requires  A  =  0  and  then  to  explore  
mechanisms  that  break  the  symmetry  only  slightly.  The  only  known  symmetry  
that  requires  a  vanishing  cosmological  constant  is  global  supersymmetry.  The  
(fermionic)  supersmmetry  generator  Q  satisfies  the  anticommutation  relation  

{Q,  Q}  = 2yl' PI'  ( 1.94)  

where  PI'  is  the  energy-momentum  vector.  It  follows  [3]  that.  for  any  state  11/1),  

(1/II PoI1/l)  =  (1/IIQaQ:  +  Q:  Qa  11/1)  ~ O.  ( 1.95)  

Thus,  the  energy  of  any  non-vacuum  state  is  positive  and  the  vanishing  of  the  
vacuum  energy  defines  a  unique,  supersymmetric  vacuum  state  10)  that  satisfies  

(OIPoIO)  =  0  ~ QaIO)  =  o.  (1.96)  

In  a  supersymmetric  theory.  all  particles  have  supersymmetric  partners  (called  
'sparticles')  having  opposite  statistics.  That  is  to  say.  the  sparticle  associated  with  
a  fermi on  is  a  hoson  and  the  sparticle  associated  with  a  boson  is  a  fermion.  The  
sparticles  associated  with  the  quarks  and  leptons,  called  respectively  'squarks'  



16  The  standard  model  of cosmology  

and  'sleptons', are   (spin-O)  scalar particles  and,   in  a supersymmetric   theory,  they  
must  have  the  same  mass  and  quantum  numbers  as  the  original  particles.  This  
has  the  important consequence   that  the  vanishing cosmological  constant   result  is  
unaffected by   quantum effects,   because supersymmetry  ensures  that  any   quantum  
corrections  arising  from  fermion  loops,  say,  are  cancelled  by  those  that  arise  
from  the  bosonic  loops  of the   associated  sparticle.  It has   yet to   be demonstrated   
experimentally  that  supersymmetry  has  anything  to  do  with  reality.  None  of the   
sparticles  associated  with  the  known  particles  has  ever be   seen.  (It  is  hoped  that  
they  will  be  discovered  at  the  Large  Hadron  Collider  (LHC).)  Supersymmetry  
(susy),  if present   at  all,  is  therefore  a  broken  symmetry.  It  then  follows  from  
(1.95)  that  the  vacuum  energy is   positive definite.   The  experimental  limits  on  the  
sparticle  masses  require that   

msusy  ~ 100  GeV.  (1.97)  

If something  like  this  bound were   to set  the  scale  for   Pv8l:'  then  

~ '" 10- 68•  (1.98)  
Mp  

Although  small  compared  with  the  0(1) expected   in  a  generic  quantum  theory  
of gravity,   this  is  still  very  much  larger  than  the  value  (1.93)  derived  from  the  
supernovae  and  Wilkinson  Microwave  Anisotropy  Probe  (WMAP)  data.  Thus,  
if this   were  the  only  contribution  to  the  vacuum  energy  density,  we  should  be  
confronted with   an  unmitigated disaster.   

However,  including  gravity  in  any  supersymmetric  theory  inevitably  leads  
to a   supergravity  theory,  in  which  supersymmetry  is  a  local,  rather than   a  global,  
symmetry.  This  is  because  in  GR the   momentum  generator  Pp.  becomes  a  local  
field  generating diffeomorphisms of  spacetime.  Then, in a supersymmetric theory  
incorporating GR,   the  supersymmetry generators   too  become local   fields:  this  is  
why  supergravity  emerges  as  the  low-energy  limit  of string   theory.  The  form  
of  the  potential  in  a  supergravity  theory  is  given  in  section  2.8.  The  main  
point  to  note  is  that,  as  in  the  case  of global   supersymmetry,  supersymmetric  
vacua  are  generally  stationary  points of  this   potential  but  that  at  such  points  the  
vacuum  energy  density  is  now  generally  negative.  Non-supersymmetric  (scalar)  
field  configurations  in  which  the  energy  density  is  zero  do  exist  but  (without  
fine  tuning)  these  are  not  generally  stationary  points  of  the  potential.  Thus,  
supergravity does  not  solve  the  cosmological constant  problem  but   it  is  no  worse  
than  in  non-supersymmetric theories.   

In  the  absence of  any  theoretical insight into the origin of  the  smallness of  the  
cosmological  constant,  it  is  of interest   to  see  whether  'anthropic'  considerations  
can  shed  any  light  on  the  issue.  Using  the  'weak anthropic   principle',  we  seek  
to  determine  which  era  or  which  part of  the   universe  could  support  human  life,  
so  that  physicists  exist  to  pose  such  questions.  A  large  positive  cosmological  
constant  leads  to  an  exponentially  expanding  (de  Sitter)  universe,  see  (1.55).  
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This  exponential  expansion  inhibits  the  fonnation  of  the  gravitationally  bound  
clumps  of  matter  that  are  presumably  a  necessary  precondition  for  life  to  evolve;  
once  the  clumps  are  formed,  the  cosmological  constant  has  no  further  effect.  
Thus,  the  weak  anthropic  principle  requires  Acff  to  be  small  enough  to  allow  
the  fonnation  of  sufficiently  large  clumps  of  matter.  Gravitational  condensation  
began  in  our  universe  at  a  red shift  Ze  where  Ze  ~ 4.  The  energy  density  of  
matter  at  that  time  was  greater  than  the  present  matter  density  Pm  by  a  factor  
of  R3(to}/R3(te)  = (l  +Ze)3  ~ 125.  The  cosmological  constant  has  no  effect  so  
long  as  it  is  dominated  by  the  matter  density.  Thus.  provided  Pvac  ;S  125pm.  the  
vacuum  energy  density  would  not  inhibit  gravitational  condensation.  (A  more  
careful  treatment  [4]  gives  a  further  factor  of  l1r2.)  We  conclude  that  if  the  
anthropic  principle accounts for  the  value  of the  (positive) cosmological constant.  
then  we  should  expect  Pvac  ,..,  (10  - 100)Pm  because  there  is  no  anthropic  
reason  for  it  to  be  smaller.  This  gives  the  prediction  OA  '"  (10  - lOO)Om.  at  
variance  with  the  values  (1.92)  derived  from  the  supernovae  and  WMAP  data.  
Nevertheless,  it  implies  a  much  smaller  value  Pvac/ M~ than  that given  in  (1.98)  
which  was  derived  from  supersymmetry  considerations.  

In  contrast.  a negative  cosmological  constant  does  not  affect  gravitational  
clumping.  We  see  from  the  Friedmann  equation  (1.34)  that  if  A  is  negative.  the  
expansion  of  the  universe  ceases  (for  a  flat  universe  (k  =  0»  when  the  matter  
density  tenn  is  cancelled  by  the  cosmological  constant.  We  have  already  noted  
that  the  deceleration  parameter  qO  given  in  (1.90)  is  positive  for  A  <  O.  It  follows  
that  after  expansion  has  ceased.  the  universe  begins  to  contract  and,  in  fact,  it  
collapses  to  a  singularity  in  a  finite  time  T.  It  is  easy  to  show  (exercise  4)  that  

21r  
(1.99) 

T  =  J3IAI'  

Anthropic  considerations  would  then  !:'luire  that  this  leaves  sufficient  time  for  
life  to  evolve,  say  T  ~ !H o- 1  where  Ho  =  J3/81rGNPm  is  the  Hubble  time  in  
our  universe.  This  would  give  

OA  <  (41r)2  (1.I00) 
Om'"  3  

Again,  this  would  entail  a  much  smaller  value  of  Pvac/ M~ than  was  obtained  
from  supersymmetry  considerations.  However,  the  supernovae  data  indicate  a  
universal  acceleration  rather  than  a  deceleration.  Thus,  A  is  positive  and  the  
previous  bound  is  only  of academic  interest.  

1.8  Equilibrium  thermodynamics in   the  expanding  universe  

It  makes  sense  to  discuss  eqUilibrium  thermodynamics  during  most  of the  history  
of  the  universe  because  reaction  rates  were  much  faster  than  the  time  scale  for  



18  The  standard  model  of cosmology  

the  expansion  of the   universe  which  is  characterized  by  the  Hubble  time  H -I  .  

As discussed   in  section  2.2, the   pressure p,  entropy  density   s  and energy  density   
p  due  to  a  gas  of ultrarelativistic   particles  (in  which  the  temperature  T  is  much  
greater than   all  masses)  are  given by   

]l'2  
T4 P  (1.101)   = 90  N• 

211'2  
s  =  45  N.T3  (1.102)  

11'2  
= 4  

p  30  N• T  (1.103)  

where  

N.  = NB   +  iNF'  (1.104)  

The numbers  NB   and N  F ofbosonic  and fermionic  degrees  of  freedom are  defined   
after (2.19).   The entropy   S  in  a  comoving volume   R3(t)  

S=sR3  (1.105)  

is  expected to  be  conserved  because  a   homogeneous universe   has  no  temperature  
differences  to  generate  heat  transfer.  (For  an  explicit  proof  of  entropy  
conservation,  see  section  3.4  of Kolb   and  Turner or  section   15.6  of Weinberg   in  
the  general references.)   Thus,  to the   extent  that the  entropy  density   is  dominated  
by  the  ultra-relativistic  particles  

RT =  constant  (1.106)  

while  N.  is  constant.  Equation  (1.106)  is  valid  even  for  a  matter-dominated  
universe  because it  is   only  the particles   with  mass  m smaller  than   the temperature   
T  that  are  present in   thermal  equilibrium  with  appreciable  number densities   and  
contributing to   the  entropy, although  all   particles contribute  to   the  energy density.   
In  reality,  RT  will  show  small  discontinuous  changes  as the   temperature  drops  
below  the  mass  of particular   particle  species.  Subject  to  this  caveat,  equation  
(1.53)  for  the  time  dependence  of the   scale  factor  now  implies  the  following  
connection between   temperature and   time for  a   radiation-dominated universe:   

T  ()(  ,-1/2  for  radiation domination.   (1.107)  

The  constant  of  proportionality  in  this  equation  may  be  calculated  from  the  
Friedmann equation.   When  RT is   a  constant,  

(~Y = (tY   (1. \08)   

and,  using ().1  03), the   Friedmann equation  (1.34)  may  be   rewritten  as  
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(T.-) 
• 2   2  

=  81rGN  ~N T4  (1.109) 
T  3  30"  

where  we  have  neglected  the  cosmological constant  and   the  curvature term.   as  in  
section  1.5.  This  has  solution  

t  = ~  (  90  
2  

)1/2 ( 1.110)  1r 2N.  MpT-2  

:::::  1.5IMpN;I/2T -2.  (1.111)  

If.  for  example.  the  appropriate  N.  for  T  above  100  GeV  is  that  of the   SU(3)  x  
SU(2)  x  U(1)  standard  model  or  that  of the   supersymmetric  standard  model.  
then  

427 or  915 
N·=T  (1.112) T  

respectively.  
Equations  (1.54)  and  (1.1 06)   imply  the  following  connection  between  

temperature  and  time  for  the  matter-dominated,  universe:  

T  ex  t-2/3  for matter  domination.   (1.113)  

For a   matter-dominated universe.   

3  
2 2  (  T  )

p(T)  =  3MpHoQo  To  (1.114)  

where  we  have  used  (1.56).  (1.1 06).   (1.58)  and  (1.40).  Using  (1.108).  the  
Friedmann equation  (1.34)   may  be rewritten   as  

(T t)2   =  (T)3 
 (1.115) HJQo  To  

with  solution  
2 

t  = 3(HoQ~/2)-1  (~r3/2 (1.116)  

1.9  Transition  from  radiation  to  matter  domination  

As  we  have  seen  in  ( 1.49) and  (1.50). the  energy density of  radiation decreases  as  
R-4  as  the  universe  expands  whereas  the  energy  density  of matter   decreases  as  
R-3.  Thus.  radiation  domination  gives  way  to  matter  domination  at  some  point  
in  the  expansion  of the   universe.  For  a  matter-dominated  universe.  the  energy  
density  is  given  by  (1.114)  and  for  a  radiation-dominated  universe  by  (1.103).  
However.  there  is  a  subtlety  in  the  interpretation  of N.   which  must  be  taken  into  
account.  We  shall  assume  that  the  transition  temperature  is  sufficiently  low  that  
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the  only  relativistic  particles  are  the  photon  and  three  neutrinos.  Neutrinos  drop  
out  of  thennal  equilibrium  below  about  I  MeV  when  the  (weak)  interaction rate  
that  keeps  them  in  thennal  equilibrium  becomes  less  than  the  Hubble  parameter.  
(See  section  5.2.)  When  the  temperature  drops  below  the  electron  mass  (about  
0.5  MeV),  electrons  and  positrons  annihilate  via  e+e- -+  yy,  and  the  entropy  of  
the  electron-positron  pairs  is  transferred  to  the  photons.  However,  no  entropy  is  
transferred  to  the  neutrinos,  which  are  now  decoupled.  Before  electron-positron  
annihilation,  we  have  

7  11 
N.  =  2+  ~ =  T  (1.117)  

but  afterwards  we  should  take  
N.  =2.  (1.118)  

Note  that we  are  not  keeping  any  contribution  from  the  neutrinos  because  they  
have  now  dropped  out  of  thennal  equilibrium  and  no  longer  contribute  to  the  
entropy.  If  Ty;  and  Tyf  are  the  photon  temperatures  before  and  after  electron­
positron  annihilation,  conservation  of entropy  requires  that  

T 11  T3.  = 2T3  (1.119) yl  yf  

so  that  
Tyf  _  (11)1/3 
 

(1.120) Ty;  - 4'  ~ 1.4.  

However,  the  neutrinos  do  not  share  in  this  temperature  increase.  Thus,  there  is  
an  effective  N.  for the  purpose  of calculating the  energy density  of radiation  

N •• eff  = 2  + t  x  6 x  (rt )4/3  ~ 3.36.  (1.121)  

Note  that  the  relativistic  neutrinos  still  have  an  energy  density  that  varies  as  R-4  

as  the  universe  expands,  because  their  number  density  varies  as  R-3  and  they  
undergo  redshifting  of  their  energy  as  R-1•  Thus,  the  neutrino  energy  density  
also  varies  as  T4 ,  where  T  is  the  photon  temperature,  i.e.  the  temperature  in  the  
usual  sense.  Then.  from  (1.103).  in  the  radiation-dominated  universe  below  the  
temperature  at  which  e+e- annihilation  occurs,  

11'2  
p(T)  =  30 N.,effT4.  (1.122)  

If  the  matter  energy  density  of  (1.114)  and  the  radiation  energy  density  
(1.103)  are  equal  at  a  temperature  Teq.  we  find  that  

9OM2H,20o 
T.  - P  0  (1.123) eq- 2  3'  

11'  N •• effTO  

Using  (1.65),  (1.121)  and  (  1.40)  gives  

Teq  =  5.6800h2  eV.  (1.124)  
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With  h  given by  (1.66)  and   00 by   (1.42),  we  have  

Teq::::3eV.  (1.125)  

This justifies  the  original assumption  that  the  only  relativistic  particles  are  the  
photon and   three  neutrinos.  

1.10  Cosmic  microwave  background  radiation  (CMBR)  

During  the  radiation-dominated  era,  the  photons  were  in  thennal  equilibrium  
with  matter  (at  the  same  temperature)  because  of interaction   with  the  charge  
of the   electrons  and  protons.  We  are  making  the  approximation  here  that  all  
baryons  in  the  universe  at  this  time  are  in  the  fonn  of  protons.  However,  
eventually the  electrons  and   protons combine  into  neutral   atoms.  (This is   referred  
to  as  'recombination'.)  Thereafter,  photons  decouple  from  matter  and  evolve  
at  a  temperature  different  from  matter.  In  this  way.  black-body  radiation  at  
the  recombination temperature  develops   into  black-body  radiation  in  the  present  
universe  at  a lower   temperature,  because  the  temperature  is  proportional  to  the  
mean  photon  energy and   the  energy  of  the  photons  has  redshifted  with  the  
expansion of  the  universe.  Thus. for  the  photons,   

T  '" R(I)-I.   (1.126)  

The recombination  temperature   T rec  may  be estimated  to   be  

Tree  = 3575  K  = 0.31  eV.  (1.127)  

Here,  recombination  has  been defined  as  the  point  at  which  90%  of electrons   
have  combined with  protons.  (See,  for example,   section  3.5  of Kolb   and  Turner  
in  the  general  references.)  We  may  calculate  the  time  of recombination  tm;  from  
(1.116),  noting that   the  universe  has  been  matter  dominated  from  the  time  of  
recombination until   the  present by  comparing  (1.127)  with   (1.125).  Using  (1.42),  
(1.65) and  (1.66),   with  To  =  2.73 K,   gives  

Im;  ::::  1.89  x  105  yr.  (1.128)  

1.11  Big-bang  nucleosynthesis  

In  chapter  4  we  shall  discuss  possible  explanations  of  the  'observed  baryon  
asymmetry of  the  universe':  

nB  
TJ  '=  - ~ 6.4  x  10-10  (1.l29)  

ny  
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where  nB  and  ny  are  the  present  number  densities  of  baryons  and  photons.  
Before  doing  this,  it  is  important  to  understand  the  origin  of  this  number  whose  
explanation  has  been  and  remains  a  major  topic  of  research.  For  this  reason  we  
shall  outline  here  how  this  number  emerges  from  measurements  of  the  present  
abundances  of  the  light  elements,  specifically  deuterium  (0),  helium  eHe  and  
4He)  and  lithium  eLi).  Light  elements  such  as  these  and  also  tritium  (T  or  3H)  
and  beryllium  eBe)  were  formed  in  a  primordial  nuclear  reactor.  We  shall  see  
that  the  process  begins  towards  the  end  of the  'first  three  minutes',  as  the  era  was  
so  memorably  described  by  Weinberg  [5].  The  first  step  is  the  formation  of  the  
A  =  2  nucleus  deuterium  via  the  process  

np-+  Oy  (1.130)  

conventionally  written  by  nuclear  physicists  as  p(n,  y)O.  At  earlier  times,  the  
process  goes  in  both  directions.  However,  since  there  are  more  than  109  photons  
for  every  nucleon  in  the  universe  at  that  time,  any  newly  formed  deuterium  is  
dissociated  before  it  gets  a  chance  to  capture  a  neutron  or  proton  and  begin  
building  heavier  nuclei.  Thus,  no  appreciable  deuterium  density  accumulates.  
This  'deuterium  bottleneck'  persists  until  there  are  too  few  sufficiently  energetic  
photons  to  dissociate  the  deuterons before  they  can  capture  nucleons.  The  A  =  3  
nuclei  3He  and  3H  are  then  formed  via  

O(p,  y)3He:  pD  -+  3Hey  (1.131)  

D(D,n)3He :  DD  -+  3Hen  (1.132)  

3He(n,  p)  3H  :  n  3He  -+  3Hp  (1.133)  

and  4He  via  

T(D,  n)4He:  DT  -+  4Hen  (1.134)  

3He(0,  p) 4He  :  D 3 He -+  4He p.  ( 1.135)  

Since  there  are  no  stable  A  =  5  nuclei,  the  synthesis  of  heavier  nuclei  requires  
the 4He nuclei  to  interact with  0, 3H or 3He, all  of which are positively charged.  
The  Coulomb  repUlsion  suppresses  the  reaction  rates  for  such  processes,  thereby  
ensuring that virtually all  of the neutrons available for primordial nucleosynthesis  
wind  up  in  4He,  the  most  tightly  bound  of  the  light  nuclei.  Subsequently,  the  
processes  T(4He,  y)  1Li,  7Li(p,  4He)4He,  3He(4He,  y)  7Be  and  7Be(n,  p)  1Li  
form  more  4He  and  also  small  amounts  of lithium  and  beryllium.  

The  first  process  p(n,  y)D  is  crucial,  since  an  appreciable  deuterium  
abundance  must  be  built  up  before  the  others  can  proceed;  the  neutron  and  proton  
number densities  are  too  low  to  allow  the  build-up of the  other nuclear abundances  
by  direct  many-body  processes.  Clearly,  the  original  abundance  of  neutrons  and  
protons  determines  the  light  element  abundances  generated  by  these  primordial  
processes.  However,  light  elements  are  also  created  and  destroyed  in  stars,  
supernovae  and  other  astrophysical  phenomena.  Consequently,  the  light  element  
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abundances  measured  today  differ  significantly  from  those  created  in  the  first  
three  minutes.  Because  of  this,  the  primordial  abundances  can  only  be  inferred  
from  the  observational  data  after  corrections  to  allow  for  the  effects  of  galactic  
chemical  evolution.  The  discussion  of  these  is  beyond  the  scope  of  this  book.  
Here  we  shall  instead  focus  on  the  essential  physics  of the  primordial  processes.  
Following  Bemstein  et  al  [6]  and  Sarkar  [7],  we  shall  present  a  semi-analytical  
treatment  that  allows  the  4He  abundance  to  be  calculated  quite  accurately.  The  
precise  calculation  of  this  and  the  other  yields  and,  hence,  of  the  present  baryon  
asymmetry  requires  a  detailed  numerical  analysis  which  also  will  not  be  presented  
here.  

At  sufficiently  high  temperatures  (above  a  few  MeV)  neutrons  and  protons  
are  in  kinetic  and  chemical  equilibrium  with,  as  follows  from  (1.129),  a  very  
high  value  (O( 1 011»  of  the  entropy  per  nucleon.  During  this  era  the  equilibrium  
nuclear  abundances  are  quite  negligible.  The  first  stage  of  nucleosynthesis  is  the  
freeze-out  of the  weak  interaction  processes  

nVe  ~ pe- ne+  ~ PVe  n  ~ pe-ve  (  1.136)  

that  previously  kept  neutrons  and  protons  in  equilibrium.  Kinetic  equilibrium  
requires  equality  of the  temperatures  of  the  particles:  

Tn  =  Tp  =  Te  =  Tv  =  T  (1.137)  

and  chemical  eqUilibrium  requires  that  the  chemical  potentials  of  the  various  
species  satisfy  

Iln  - /l p  =  Ile- - /lv.  =  /lii.  - Ile+'  (  1.138)  

The  total  rate  Anp  for  converting  neutrons  to  protons  via  these  processes  is  the  
sum  of the  individual  rates:  

Anp  =  A(nve  -+  pe-)  + A(ne+  -+  pve)  + A(n  -+  pe-ve )  (1.139)  

and  the  total  rate  Apn  for  the  reactions  that  convert  protons  to  neutrons  is  given  by  
detailed  balance  

Apn  = Anpe-Am/T  where  ll.m  =  mn  - mp  =  1.293  MeV.  (  1.140)  

(The  difference  arises  because  of  the  slightly  different  Boltzmann  factors  in  the  
neutron  and  proton  equilibrium  densities,  see  (4.19).)  Let  us  denote  the  fractional  
relative  neutron  abundance  by  Xn  ==  "n/nN,  where  "n  is  the  neutron  number  
density  and  "N  is  the  total  nucleon  number  density  nN  ==  "n  + "p  where  np  
is  the  proton  number  density.  Then  the  fractional  relative  proton  abundance  is  
Xp  ==  np/nN  =  I - Xn.  The  evolution  of  Xn  is  determined  by  the  balance  
equation  

Xn  =  Apn(l  - Xn)  - AnpXn.  (1.141)  
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The equilibrium  solution,   found  by  setting Xn   =  0, is   

xeq  t  _  Apn(t)  - __ I  
+ where  A  ==  

n  (  ) ­ A(t)  - 1 Apn  eAmIT(t)  + Anp.   (1.142)  

Thus,  we  may  rewrite  (1.141) as   

•  
Xn  = eq 

-A(Xn ­ Xn  ).  (1.143)  

This  shows  that  Xn  is  always  between  its  initial  value  and  X~. At  early  times  
A  is  large  compared  to  the  rate  of time   variation  of the   individual  rates  and  X"  
quickly  tracks  its  equilibrium  value  X~(t). This persists   until the   scattering  rate  
A (t) decreases  until   it becomes  comparable  with   the Hubble  rate   H (t)   ==  R / R  =  
- t /  T.  At  this  point,  because  of the   expansion  of the   universe,  the  nucleons  
become  too  dilute  to  maintain  the  chemical  equilibrium,  they  decouple  and  the  
number densities   become  'frozen' at   the  values they   have  at decoupling.   Thus,  

Xn(tdec)  ~ X~(tdec) = ----:- (1.144)  

As  explained  in  section  5.2,  the  decoupIing  (or  freeze-out)  occurs  when  the  
temperature is   

Tdec  ~ 1  MeV.  (1.145)  

It  is  a  remarkable  coincidence  that  these  two  numbers,  Tdec  and  Il.m  (given  in  
(1.140»,  are  of the   same  order.  The  former  derives  from  the  interplay  between  
the weak  and  gravitational  interactions,  while  the   latter derives  from  the  difference   
between  the  u  and d   quark  masses,  which  is  of unknown   origin  but  presumably  
as  a  result  of strong   and  electromagnetic effects.   Because  of this   coincidence,  a  
substantial fraction (of  order 20%) of  the neutrons survive and this, in turn,  results  
in  a significant amount of  promordial helium formed in the early universe.  

This  calculation  of the   fractional  relative  abundance  of neutrons   when  the  
weak interactions decouple is only a rough estimate.  For a more accurate estimate,  
we  must  solve  the  balance  equation  (1.141).  It is   convenient to   use  the  variable  
y  ==  Il.m/T  instead of  t.   In  this era,   the  temperature  T  is  related to   the  time  t  by  
equation  (1.111)  with  N.  = 3.36,  as  shown  in  (1.121).  Using  (1.140),  the  total  
decay rate   is  

A(y) ~ Allp(y)(1  + e-Y)  (1.146)  

neglecting  the  neutron  decay  rate  compared  to  the  scattering  rates.  Bemstein  et  
al [6]   have  approximated Allp(y)  by   

Anp(y)  ~ 2A(nve  ~ pe-) ~  ~(12+ 6y +  yl)  (1.147)  
1'IIY  

where a   ~ 253 and   l'n  ~ 887 s.   is the  neutron   lifetime. Then   the  solution  is  

Xn(y)  = X~(y)  + laY  dy' eY/[X~(y')]21(y,  y')  (1.l48)  
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where  

[ 1 ,'  dt"  
I(y, y'>   = exp   - v  dy" dy"Anp(y")(1   + e-Y 

/I  ] 
 )  ( 1.149)   

=  exp[K(y) - K(y')].  (1.150)  

Using (1.147)  gives  (exercise  4)   

b  
K(y)  =  3'[4 + 3y  +  i  + (4  +  y)e-']   (1.151) 

y  

where  

b=a  
V 
rw 
N. 1l'Tn(L\m)2' 

 3Mp  _  ( 1.152)  
 

The required  integral   is  easily evaluated  numerically  and  gives   

Xn(y  ~ 00)  ~ 0.15.  (1.153)  

This  asymptotic  value  is  essentially  achieved  when  y  ~ 5  corresponding  to  
t  ~ 20 s,  and  a   temperature of  T   ~ 0.25 MeV.   

The next  stage  of  the  process is   the  formation  of deuterium.  The rate   for the   
process  np  ~ Dy  exceeds the   expansion  rate  of the   universe  until  temperatures  
of order   10-3  MeV,  so  that  deuterium  will  be  present  in  this  epoch  with  its  
eqUilibrium  abundance.  Using  the  non-relativistic  number  densities,  analogous  
to  (4.19), gives  the   Saha equation  for  the   deuterium abundance  n  D  

3/2 
nD  ND  21l'mD  4DIT  (1.154) 

nnnp  = NnN 
(  ) 

p  mnmpT  e  

where N  D  =  3 and  N  p  = Nn  = 2  are the   statistical factors,  defined   in  section 2.2,   
for the  deuteron  and  nucleons,  and   

L\D=mp+mn-mD~2.23 MeV  (1.155)  

is  the  binding energy  of  the  deuteron.  Then the  corresponding  mass  fractions   

X.  _ .=-- n;A; (1.156)  
nN  

where  All  =  Ap  =  I  and  AD  =  2  are,  respectively,  the  mass  numbers  of the   
nucleons and  deuteron,  satisfy   

3/2  
~ =  24{(3)  (!.... ) TJe40lT  (1.157)  
XnXp  .fii  mp  
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where  71  is  defined  in  (1.129).  A  rough  estimate  of the   temperature  Tns  at  which  
nucleosynthesis starts   may  be made  by   detenniningwhen XD/  XnXp   becomes of   
order one.  Taking logarithms of  (1.157) gives  

-~D = 3  ~D
-ln7l+6.27+ -In­ (1.158) 

Tns  2  Tns  

which  may  be  solved  iteratively.  With  the  (inferred)  value  given  in  (1.129),  we  
get  

~D
Tns  ~ 33 ~ 0.068  MeV.  ( \.159)   

The temperature  at  which   nucleosynthesis starts   is  so  much  less than   the  deuteron  
binding energy   because  71  is  so  small.  Since  there  are  of order  1010  photons  per  
nucleon,  there  are  enough  high-energy  photons  in  the  Wien  tail  of the   Planck  
distribution  to  dissociate  the  deuterons  until  the  temperature  drops  to  much less   
than  the  binding  energy.  A  more  careful  estimate  can  be  made  [6]  using  the  
rate  equation  for  the  deuterium  abundance,  with  the  onset  of nucleosynthesis   
being  defined  by  XD  =  O.  This  gives  Tns  ~ 0.086  MeV.  Using  (1.I2l).  the  
temperature-time relation   ( 1.111)  gives   

I ~ 1.32  (  _T  (1.I60) 
MeV 

)-2  
 s  

so that  nucleosynthesis  begins   when  

Ins  ~ 178  s  (1.161)  

as  immortalized  by  Weinberg  [5].  The  neutrons  that  survived  when  the  weak  
interactions  decoupled  have been   depleted  by  beta-decay during   the  intervening  
period.  Thus,  the  relative  abundance  of neutrons   surviving  until  the  onset  of  
nucleosynthesis is   

Xn(tns)  ~ Xn(Y  - oo)e-tDl TII  / ~ 0.12.  (1.162)  

As  explained earlier,   nearly  all  of these   neutrons  wind  up in   4He,  because  of its   
large  binding  energy.  If we   assume  that  all  of the   neutrons  are captured   in  4He,  
the  mass fraction   ofprimordial 4He, denoted   Yp (4He),  is simply  given  by   

Yp (4He)  ~ 2Xn(tns)  ~ 0.24  (1.163)  

in  excellent agreement  with   the  data  (8]  

0.214  <  Yp(4He)  <  0.242.  (1.164)  

The  foregoing  calculation  shows  how  the  primordial  4He  abundance  is  
determined  by  the  baryon  asymmetry,.,.  In  principle,  the  same  calculation  
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determines  71  once  the  helium  abundance  has  been  measured.  However.  since  
Yp (4He)  depends  only  logarithmically  on  71.  as  is  apparent  from  (1.158).  this  does  
not  yield  a  very  precise  value  for  7'/.  In  contrast.  when  similar  techniques  are  
applied  to  the  (much  smaller)  primordial  abundances  of  the  other  light  nuclei.  
specifically  D.  3He.  and  7Li.  the  dependence  upon  7'/  becomes  a  power.  It  is  a  
testament  to  the  success  of  the  standard  cosmological  model  that  a  single  value  
of 71  simultaneously  fits  the  data  on  all  primordial  abundances  and  allows  a  much  
more  precise  determination  of  the  parameter.  The  value  (1.129)  of  the  parameter  
that  we  use  in  chapter  4  is  obtained  from  a  simultaneous  fit  of  the  cosmological  
parameters to  all  of these and other data.  including the recent  WMAP microwave  
anisotropy  data  ll].  

1.12  Exercises  

I.  Show  that  the  radial  path  from  coordinate  (r.  (J.  r/J)  at  t  =  0  to  coordinate  
(0.  (J.  r/J)  at  time  t  is  a  geodesic.  

2.  Verify  that  the  Ricci  tensor  for  the  Robertson-Walker  metric  (1.1)  has  the  
non-zero  components  given  in  (1.30).  

3.  Verify  that  the  IL  = 0 component  of (1.43) gives (1.45).  What information is  
provided  by  the  IL  =  i  components?  

4.  For  a  flat  FRW  universe  with  pressureless  matter  and  a  negative  cosmological  
constant  A.  show  that  the  universe  collapses  to  a  point  singularity  in  a  time  

21f  
T  =  J3IAI.  

5. 	 Show that the solution  of the balance equation (1.141) for the relative neutron  
abundance  has  the  form  (1.148)  with  the  integrating  factor  as  given  in  
(1.150).  Using  the  approximation  (1.147).  verify  that  the  function  K(y)  is  
given  by  (1.151).  

1.13  General  references  

The  books  and  review  articles  that  we  have  found  most  useful  in  preparing  this  
chapter are:   

• 	 Kolb  E  Wand  Turner  M  S  1990  The  Early  Universe  (Reading.  MA:  
Addison-Wesley)  

• 	 Weinberg  S  1972  Gravitation  and Cosmology:   Principles and  Applications   
of the  General Theory  of  Relativity (New   York:  WHey)  

• 	 Weinberg  S  1989  Rev.  Mod.  Phys.  61  I  
• 	 Sarkar  S 1996   Rep.  Prog.  Phys.  59  1493. arXiv:hep-phl9602260   
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Chapter 2 

Phase transitions in the early universe 

2.1 Introduction 

Elementary particle theory possesses gauge symmetries that are spontaneously 
broken by scalar fields belonging to non-trivial representations of the gauge 
group when these fields develop non-zero expectation values at the minimum 
of the effective potential. In particular, the S U (2) L x U (l)y gauge group of 
electroweak theory is spontaneously broken to the U (I )em of electromagnetism 
by the electroweak Higgs scalar expectation value. If grand unification to a 
group larger than the SU(3)c x SU(2)L x U(1)y of the standard model, e.g. 
to SU (5), occurs at some energy scale, then the grand unified gauge group breaks 
spontaneously to the standard model gauge group before this gauge group in turn 
breaks to the U (I )em gauge group. Things may be more complicated than this, 
with a sequence of spontaneous symmetry breakings to subgroups of the original 
grand unified group. 

As we shall see later in this chapter, finite temperature effects may result 
in some other minimum of the effective potential being deeper than the absolute 
minimum of the zero-temperature theory. Then, as the universe cools, it may 
undergo a series of first- or second-order phase transitions between different 
minima of the effective potential. Such transitions will occur at temperatures 
corresponding to the scales of energy associated with the various spontaneous 
symmetry breakings. In the case of the electroweak phase transition to the phase 
with only U (1 )em unbroken, the scale of temperature for the phase transition will 
be of order 102-1 oJ Ge V and, in the case of a grand unified phase transition to a 
phase with SU(3)c x SU(2)L x U(l)y unbroken, the phase transition will occur 
at a temperature closer to the Planck scale, perhaps at about 1016 Ge V. If the grand 
unified theory breaks to SU(3)c x SU(2)L x U(l)y in stages through a sequence 
of phase transitions, the additional phase transitions will occur at intermediate 
scales. 

In later chapters we shall see that these phase transitions can have a profound 
effect on the history of the universe through a number of different processes. For 
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example,  topologicaUy  stable  objects  such  as  domain  walls,  cosmic  strings  and  
magnetic  monopoles  can  be  formed  when  the  'alignment'  of the   spontaneous  
symmetry  breaking  expectation  value  is  different  in  adjacent  causal  domains.  
These  can  make  substantial  contributions  to  the  energy  density  of the   universe.  
Moreover,  if supercooling   occurs  before  the  phase  transition  is  completed,  the  
reheating  that  takes  place  when  the  phase  transition  occurs  can  greatly  modify  
pre-existing particle densities.  In addition,  if the universe spends some time with  
positive  vacuum  energy  (cosmological  constant)  before  relaxing  to  a  minimum  
with  zero  vacuum  energy,  then  rapid  expansion can  occur.   Such  an  'inflationary'  
stage  in  the  history  of the  universe,  to  be  discussed  in  later chapters,  may  explain  
the  extreme  isotropy,  homogeneity  and  flatness  of  the  present  day  observed  
universe.  For  all  of  these  reasons  it  is  important  to  understand  any  phase  
transitions  that may   have  occurred as   the  universe cooled.   

In  this  chapter  we  shall  begin  by  developing  the  partition  function  and  
the  effective  potential  for  the  gauge  field  theories  at  finite  temperature  [1-5)  
before  applying  these  methods  to  the  Higgs  model,  as  a  warm-up,  and  then  to  
electroweak theory and grand unified theory.  In each case, the nature of  the phase  
transitions  that  occur  as  the  temperature  of the   universe  drops  will  be  studied.  
We  shall  then  extend the   discussion  to  gauge theories  with  global   supersymmetry  
and  local  supersymmetry (supergravity).   Finally,  the  nucleation of  (stable)   'true'  
vacuum  from  (metastable)  'false'  vacuum  in  first-order  phase  transitions  will  be  
considered.  This  nucleation  rate  wi\1  control  the  extent  of any   supercooling  that  
occurs  before the   phase transition   is complete.   

2.2  Partition functions   

One  of  the  fundamental  objects  in  the  statistical  thermodynamics  of  a  finite  
temperature system   is  the  partition function   Z  defined  by  

Z  = Tre-fJH  (2.1)  

where  iI is   the  Hamiltonian operator  and   

{J  = (kBT)-1   = T- 1  (2.2)  

in  units  where  the  Boltzmann  constant  kB  is  set  equal  to  l.  The  trace  in  (2.1)  

means  that  we  are  to  sum  over  the  (diagonal)  matrix  elements  of e- fJH  for  all  
independent states   of the  system.  Once  the  partition function   has been  evaluated,   
the  (Helmholtz)  free  energy  F  is  given  by  

Z  =  e-fJF  (2.3)  

where,  as  usual  in  thermodynamics,  F  is  related  to the   internal  energy  E  and  the  
entropy  S  by  

F=E-TS.  (2.4)  
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The pressure   P  and  entropy are   obtained  from  the  free  energy as   

p  
aFI  = - av  (2.5) T  

and  

s =  _  aFI  .  (2.6) 
aT  v  

As  follows  immediately from   (2.4), the   energy density  p   is  given  by  

p  =:F+ Ts   (2.7)  

where  :F  and  s  are  the  free  energy and   entropy densities,   with  

E  =  
 d3xp  (2.8) 

and so forth.  Thus, in particular, a calculation of  the partition function will provide  
us  with  a  determination of  the  energy density.   

The  partition  function  in  a  gauge  field  theory  is  most  efficiently  calculated  
using  path  integral  methods.  It  is  not  the  business of  the   present book   to  develop  
such  methods  which  can  be  found  developed  at  length  elsewhere  [1-5].  It  
will  suffice  for  our purposes   here  to  to  summarize  the  outcome  for  the  various  
contributions to   the  partition function.   

The  simplest  contribution  comes  from  the  free  (neutral)  real  scalar  fields.  
The Lagrangian  density  for   such a   field  41  having  mass m   is  given  by  

2 
I  aq,  a  ( ) I   £(41  41)  2  I 2 41  2   

= - - - -(Vq,)  - -m  .  (2.9) 
'p.  2  at  2  2  

In  field  theory  at  finite  temperature,  scalar  fields  41  (t, x)   are  replaced  by  fields  
q,(r:.  x) periodic  in   r:  with  period p,   

q,(r:  = D.  x)  = q,(r:  = P.   x)  (2.10)  

where  
r:  = it.  (2.11)  

We  shall  use  the  usual  convention  of referring   to  non-zero  temperature  as  'finite  
temperature'.  The partition  function   is  formulated in   terms of  these periodic  fields   
as  

Z  =  N(P)  !periodic  Vq,exp [foil   dr:  !  d3x £(41,  Bp.q,)]  (2.12)  

where  

- (. aq,   ) ap.q,=  lar:'Vq,  (2.13)  

! 
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and  N (fJ)  is  a  temperature-dependent  normalization.  The  integral  f  V4>  is  a  path  
integral.  Such  integrals  may  be  thought  of  as  the  generalization  of  an  integration  
f~oo dYI  f~ dY2  ... f~oo dYn  over  the  finite  number  of  components  of  an  n­
component  column  vector  y  to  an  integration  over  the  continuous  infinity  of  
components  of  a  function  4>(r,  x).  Evaluation  of  the  path  integral  gives  for  the  
contribution  of  a  real  scalar  field  to  the  free  energy  

-fJF  =  InZ  

= - f d3x f (~~3 (~/p2+m2+ln[l-exp(_p/p2+ m2)]).  
(2.14)  

When  the  mass  of the  scalar  field  is  negligible  compared  with  the  temperature  (an  
ideal  ultra  relativistic  gas  of scalar  particles),  the  free  energy  density  simplifies  to  

]f2T4  
:F=-- when  T»  m.  (2.15) 

90  

For  gauge  vector  bosons,  there  are  some  subtleties  because,  for  a  typical  
choice of gauge, the  Lagrangian involves  all  four degrees  of freedom of the  gauge  
field  AIL(X)  and  also  involves  the  Fadeev-Popov  ghost  fields  which  occur  in  the  
construction  of  a  consistent  renormalizable  theory  but  are  not physical  particles.  
However,  a  mass less  vector  field  has  only  two  degrees  of  freedom  and  the  extra  
degrees of freedom  are  not  physical  and  cannot be  in  eqUilibrium  with  a heat  bath  
nor,  of  course,  can  the  Fadeev-Popov  ghosts.  Fonunately  there  exist  gauges  in  
which  each  gauge  field  has  only  two  degrees  of freedom  and  in  which  there  are  no  
Fadeev-Popov  ghosts  and  the  partition  function  can  be  related  to  the  Lagrangian  
density  in  such  a  gauge.  In  any  other  gauge,  it  can  be  shown  that  one  may  continue  
to  use  this  expression  for  Z  but  with  the  form  of  the  Lagrangian  appropriate  for  
that  gauge.  In  an  arbitrary  gauge  the  contribution  of the  two  non-physical  degrees  
of  freedom  of  the  gauge  field  cancels  the  contribution  from  the  Fadeev-Popov  
ghosts.  Then,  the  contribution  to  the  free  energy  density  from  a  massless  vector  
gauge  field  is  found  to  be  

:F  = _  2]f2T4  
(2.16) 90  .  

In  the  case  of  Dirac  fields  1/1,  the  corresponding  development  at  finite  
temperature  involves  fields  1/I(r,  x)  that  are  anti-periodic  in  r  in  the  interval  
(0,  fJ),  

1/I(r  =  0,  x)  =  -1/I(r  =  fJ,  x)  (2.17)  

and  the  contribution  to  the  free  energy  density  is  

:F  =  _  7]f2T4  
when  T»  m.  (2.18) 

180  
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For massless fermions  (with only one helicity state  of the  particle), the calculation  
(using Weyl  spinors) gives half  of this answer.  

Pulling all  of this together, the free energy density  of an  ideal ultra relativistic  
gas  (T  »  m)  is  given  by  

7) 7r2T4 :1"=  - (  NB  +-NF  -- (2.19) 
8  90  

where  NB  and  N F  are,  respectively,  the  numbers  ofbosonic  and  fermionic  degrees  
of freedom.  (NB  =  1  for  a  real  scalar  field,  NB  = 2  for  a  real  gauge  field,  N F  =  4  
for  a  Dirac  particle  where  there  are  two  helicity  states  for  the  particle  and  two  for  
the  antiparticle  and  NF  =  2  for  a  Weyl  field.)  The  pressure,  entropy  density  and  
energy  density  follow  from  (2.5),  (2.6)  and  (2.4).  

7) 7r2T4  
P  =  (2.20) ( NB  +  gNF  ---g{)  

7) 27r2T3 ( s=  NB+-NF  -- (2.21) 
8  45  

and  7) 7r 2T4  (2.22) p=  ( NB+gNF  30'  

2.3  The  effective  potential  at  finite  temperature  

In  quantum  field  theory  at  zero  temperature,  the  expectation  value  rpc  of  a  scalar  
field  rp  (also  referred  to  as  the  classical  field)  is  determined  by  minimizing  
the  effective  potential  V  (rpcl.  The  effective  potential  contains  a  tree-level  
potential  term,  which  can  be  read  off  from  the  Hamiltonian  density,  and  quantum  
corrections  from  various  loop  orders.  The  one-loop  quantum  correction  is  
calculated  by  shifting  the  fields  rp  by  their  expectation  values  rpc  and  isolating  the  
terms  .cquad(rpc,  jJ)  in  the  Lagrangian  density  which  are  quadratic  in  the  shifted  

fields  jJ.  If we  write  

V(rpcl  =  Vo(rpc)  +  Vl(rpc)  (2.23)  

where  Vo  is  the  tree-level  contribution  and  VI  is  the  one-loop  quantum  correction  
then,  for  a  single  scalar  field,  

exp (  -if d4XVl(rpC»)  =  f  vjJexp(if  d4X.cQUad (rpc,jJ»)  (2.24)  

where,  as  in  section  2.2,  f  VjJ,  denotes  a  path  integral.  (The  derivation  and  
evaluation of (2.24)  can  be  found  elsewhere  [I ].)  
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At  finite  temperature,  as  discussed  in  section  2.2,  scalar  fields  ,p(t,  x)  are  
replaced  by  fields  ,p(r:,  x)  periodic  in  r:  with  period  p,  where  fJ  is  given  by  (2.2).  
We  now  write  the  finite-temperature  effective  potential  V (,pc)  as  

V (t/Jc)  = Vo( t/Jcl  +  VI  (,pc)  (2.25)  

where  Vo  and  VI  are  the  tree-level  and  one-loop  terms  and  the  expectation  value  
,pc  is  now  a  thermal  average.  Then  (2.24)  is  modified  to  

exp  (-foP  dr:  f d3x  VI  (,pcl)  = Jperiodk1)~exp (foP  dr:  f d3x  Cquad(t/Jc,  ~»). 
(2.26)  

If  gauge  fields  and  fermion  fields  are  included  (but  with  only  scalar  fields  being  
given  expectation  values  to  avoid  breaking  Lorentz  invariance),  then  (2.26)  also  
contains  path  integrals  over  the  gauge  fields  and  their  associated  Fadeev-Popov  
ghosts.  and  over  antiperiodic  fermion  fields.  

It  is  convenient  to  separate  the  one-loop  terms  into  the  temperature­
independent  part  Vp  (which  is  identical  in  form  to  VI)  and  the  temperature­

dependent  part  V{  and  write  

- -0  -T 
VI  =  VI  +  VI  (2.27)  

In  general,  for  a  theory  involving  scalar  fields  ,pi,  gauge  fields  A~ and  Dirac  
fermions  tr.  after  shifting  the  scalar  fields  by  their  expectation  values.  the  terms  
in  the  Lagrangian  of quadratic order  in  the  fields  are  of the  form  

- I  A2  - - I  A2 £quad(t/Jc.,p)  = - ,,[MS(,pc)]ij,pi,pj  +  ,,[Mv(,pc)]tlbA~Ab~ 
A  ­ 1---­

- [MF(,pcl1rstrts  +  "a~,pia~,pi 
I - - - ­

- 4«W A;  - a"  A~)(a~AtI" - a"AtllL)  

I  (a- AII-}2  a- *0-11- (2.28) - 2~ 11- a  +  J.l.1]a  1]a'  

In  (2.28),  ,pc  denotes  the  complete  set  of  expectation  values  of  scalar  fields,  ~i 
denotes  the  shifted  scalar  fields  and  aJ.l.  is  as  in  (2.13).  Also,  1]a  are  the  Fadeev­
Popov  ghost  fields  which  have  to  be  introduced  in  the  construction  of a  consistent  
renormalizable  theory  of gauge  fields  but  do  not  correspond  to  physical  particles  
and  ~ is  the  gauge-fixing  parameter.  For  convenience,  we  have  adopted  the  
Landau  gauge  ~ --+  0  in  which couplings  of scalar fields  to Fadeev-Popov ghosts  
are  avoided.  

If  the  eigenvalues  of  the  mass-squared  matrices  M~. M~ and  M'f..  are  
(M~)i.(M~)Q and  (M'f..}r  then  the  temperature-dependent  one-loop  term  in  the  

effective  potential  vf  takes  the  form  

vf (,pc)  =  ~: 1000  
dy  y2  {  ~ In  [I  - exp  (  -/ y2  + r-2(Mj);)  ]  

I  
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+ ~ (31n  [I  - exp  (  _Jy 2  + T-2(M~)Q)] -In(l  - e-Y»)  
- 4  ~ In  [I  + exp  (  -J y2  + T-2(MF)~) ]  }.  (2.29)  

There  are  two  limits  in  which  Vr  is  particularly  simple.  First,  in  the  limit  
when  all  mass-squared  eigenvalues  are  very  much  greater  than  r2  all  terms  in  

Vr  approach  zero  exponentially  and  vr  becomes  negligible.  (It  is  not  obvious  
that  this  is  true  of  the  In(  I - e-Y)  term  in  (2.29).  However,  in  a  general  gauge,  

this  term  is  replaced  by  In[1  - exP(-Jy2  + fT-2(M~)a)l. where  f  is  the  gauge  

parameter.  If the  limit  r-2(M~)a -+  00  is  taken  before  the  limit  f  -+  0,  to  
recover  the  Landau  gauge,  this  term  vanishes.)  

Second,  in  the  high-temperature  limit  where  r2  is  very  much  greater  than  
the  mass-squared  eigenvalues,  we  may  use  

~42 1000 
dy  y21n  [I  - exp  (  -J y2  + RT-2) ]  

= _  7r 2r4  +  Rr2  _  R3/ 2r  _  ~ In  (~) 
90  24  127r  647r 2  abr2  

R2  00  t  S"(21  +  I)  (  R  )l 
-167r5/2L)-I)  (/+  I)!  47r 2r 2  

l=1  

where  
ab  =  167r2In(~ - 2YE)  In  ab  =  5.4076  (2.30)  

and  

~42 1000  
dy  y21n  [I  + exp  (  -J y2  + Rr-2)  ]  

77r2r4  Rr2  R2  (R) 
=  720 - 48 - 647r2  In  afr2  

R2  00  (21  +  I)  (I) (  R  )t ___ "(_I)tS"  (I-2-2t- l >r  l+- -­
167r5/2~ (I+I)!  2  47r2r 2  

t=1  

where  (3  ) 2  ab  Inaf  =  2.635\.  (2.31) a f  =  7r  In  2 - 2YE  =  16  

Thus,  in  the  high-temperature  limit,  

-T  7r 2r4  (  7) 
VI  (4)c)  ~ - 9()  NB  +  gNF  
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+  ~: [  ~(Mj)i +  3  ~(M~)a +  2  ~(MF)~]  

- ~[L(M1)i + 3  L(M~)a] + ...  
121l'  i  a  

1l'2T4  (  7) 

=  - 9()  NB  +  gNF  

T2  A2  A2  A2 
+  24  [tr  Ms(t/Jc>  +  3  tr  Mv(t/Jc>  + 2  tr  MF(t/JC>]  

A  A T  2  3/2  2  3/2 - -[tr(MS(t/Jc}}  + 3  tr(Mv(t/Jc}}  ]  +....  (2.32) 
121l'  

where  Mj(t/Jc),  M~(t/Jc) and  Mi(t/Jc)are  the  scalar.  vector  and  Dirac  fennion  mass  
matrices  of (2.28).  (For  fennions  described  by  Weyl  spinor  fields  there  should  be  
no  factor  of 2  in  front  of the  Mi  term  in  (2.32).)  The  T4  term  in  (2.32)  is  just  the  
free  energy  density  for  an  ideal  ultra  relativistic  gas  (in  agreement  with  (2.19)  with  
NB  and  N F  respectively the  number ofbosonic and  fennionic  degrees  of freedom,  
in  the  sense  described  following  (2.19).  If  some  fields  are  heavy  and  some  are  
light  on  the  scale  of  the  temperature  T,  then  NB  and  N F  should  be  interpreted  
as  the  degrees  of  freedom  of  light  fields,  and  the  traces  over  the  mass  matrices  
should  be  evaluated  only  for  light  fields.  since  heavy  fields  do  not  contribute.  as  
discussed  earlier.  

2.4  Phase  transitions in   the Higgs   model  

Before  studying  phase  transitions  in  electroweak  theory  and  grand  unified  theory,  
we  warm  up  on  the  simpler  case  of  the  Higgs  model.  The  Higgs  model  is  the  
theory of a complex scalar field  coupled to a  V  (I)  gauge  field.  which  may  be  taken  
to  be  the  electromagnetic  field,  with  the  Vel)  gauge  symmetry  spontaneously  
broken.  In  other  words.  it  is  scalar  electrodynamics  with  spontaneously  broken  
electromagnetic  gauge  symmetry.  The  finite-temperature  Lagrangian  density  is  

C  =  D",t/JD"'t/J*  - m2t/J*t/J  - ~(t/J*t/J>2 - ~F"'\lF"'''
4  4  

- ;~ (8",A",>2  +  8",'1*8"''1  (2.33)  

where  

F",,,  ==  8",A"  - a"A",  (2.34)  

D",t/J  ==  (a",  + ieA",)t/J  (2.35)  

and  
D",t/J*  ==  (a",  - ieA",)t/J*  (2.36)  
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with  aIL  as  in  (2.13).  The  Fadeev-Popov  ghosts  ."  cancel  contributions  to  the  free  
energy  from  the  two  non-physical  degrees  of  freedom  of  the  gauge  field  AIL,  as  
discussed  in  section  2.2,  and  ~ is  the  gauge-fixing  parameter.  For  spontaneous  
symmetry-breaking  to  occur  (without  requiring  radiative  corrections  to  drive  it),  
m2  must  be  negative.  

To  derive  the  finite-temperature  effective  potential  using  the  methods  of  
section  2.3  it  is  necessary  to  shift  the  scalar  field  by  its  expectation  value.  We  
write  

tPc 
(tP)  =  .,fi  (2.37)  

where  the  factor  of  I/.,fi  has  no  significance  but  has  simply  been  introduced  for  
convenience,  and  tPc  may  be  taken  to  be  real  because  of gauge  invariance.  Then  
real  fields  tPl  and  tP2  are  introduced  through  

I  
tP  =  .y'2(tPc  +  tPl  +  itP2).  (2.38)  

The  quadratic  terms  in  the  shifted  Lagrangian  density  are  

I  (2  3A  2)  2  I  (2  A  2)  2 
Cquad  = - 2"  m  +  4tPc  tPl  - 2"  m  +  4tPc  tP2  

e2  2  I  - 2  I  - 2 +  "2tPcAILAIL  +  2"(BlLtPl)  +  2"(BIL tP2)  

- ~ (ijILAIL)2  +  aIL"'·  aIL  IJ  (2.39)  

where  we  have  adopted  the  Landau  gauge  ~ -+  0  which  removes  an  AlL alLtP2  
cross  term.  Then,  in  the  notation  of (2.28),  

M~(tPc) =  diag  (m2  +  3: tP;,  m2  +  ~tP;) (2.4O)  

and  
~ 2  2 2  Mv(tPc)  =  e  tPc'  (2.41)  

The  nature  of the  phase  transition  depends  on  the  relative  sizes  of e4  and  A.  

2.4.1  e4 «  1.  

The  tree-level  contribution  Vo(  tPc}  to  the  effective  potential  may  be  read  from  
(2.33)  by  replacing  tP  by  its  expectation  value  ~tPc and  is  

m2 - 2  )..  4  (2.42) Vo(tPc)  =  TtPc  +  t6tPc'  
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The  zero-temperature  one-loop  correction  of  (2.27)  and  (2.23)  has 
contributions  proportional  to  A 2  and  e4  from  different  loop  diagrams.  Provided  

that A  is  small  and that,   in  addition,  e4  «  A,  v:  may  be  neglected compared  to   
the tree   tenn (2.42).   In  the  high-temperature limit,   

T2  »  At/>:  e 2.1. 2  _m2 
'l'c  (2.43)  

the  one-loop  temperature-dependent  contribution  to  the  effective  potential  Vr  
obtained from  (2.32)  is   given by   

-T  4",2T4  (A.  + 
= -90 + 3e2

 
)T2  2  CT  3  

VI  (~c) 24  ~c - 3~c + ...  (2.44)  

where  

41fC  = tr[Mi(~c»3/2  + 3 tr[M~(~c»3/2  

3A  )3/2  (  A )3/2 = (   m2~;2 +  4"  +  m2~;2 +  4'  +  3e3  (2.45)  

~ (-3A)3/2  + (A)3/2 -  
+3e 

3 
 

 
(2.46) 

4  4  

when A~,!  » m 2• Thus,  the  complete  effective potential  to  one-loop  order  is given   
by  

- = -90 4",2T4  
+"2I  2  2  CT  3  A  4  

V(~c) m  (T)t;c  - 3~c + 16~c  (2.47)  

where a   temperature-dependent mass  m 2(T) has   been defined by   

2(T)  2  (A  + 3e2)T2 m  =m+-'---'-- (2.48) 
12  

The expectation   value  ~c of the   scalar  field  is  obtained  by  minimizing  the  
effective potential.   For sufficiently   high  temperatures,  there  is  only  one solution   
of  

av  =0  (2.49)  
a~c 

namely  

~c =0  (2.50)  

and  this is   a  minimum so   long as  m 2(T) is   positive.  From (2.48),  we   see  that this   
is the   case provided  the   temperature  T  exceeds To   where  

T,2  =  -12m2  
(2.5t) o - A+3e2 ·  

(See figure   2.1,  curve A.)   We  may  write  

v:  
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V (<Pc)  

A  

B  

c  
<Pc  

Figure  2.1.  The  finite-temperature  effective  potential  for  the  Higgs  model  when  e4  «  A.  
Curves  A,B,C  are  for  T  >  TI,  T  = Te   and  T  <  To  respectively.  

m2(T)  =  m2  (I  _ T2) (2.52) r.2  •  
o  

A  maximum  and  a  second  (local)  minimum  of  V  develop  at  non-zero  values  of  
tile  when  

m (T)  (2.53) 2 ~ C;2  
and this   happens when  the   temperature drops  below   Tt  where  

T2  =  TJ  _  -12>..m2  2  (2.54) 
I - 1 +  C2TJ/>..m2   - J..(J..  + 3e2)   _  12C2  >  To·  

The second   minimum is  at   

~,~ veT)  _  v  [  ~~I + (I  - ~I:) 112]  (2.55) 

where  
21ml  (2.56) v=- ../i  
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and the   mass  m H (T)  of  the  Higgs particle  associated  with   the fluctuations   around  
this  minimum is   given  by  

m~(T) == 	 2-2 a2vI  = CTv(T) - 2m (T).  (2.57)  
atPc  ~-u(T) 

In  the  same  way.  we  may  define  a  temperature-dependent vector  boson   mass  by  

mv(T) ==   ev(T). 	 (2.58)  

When  the  second  local  minimum  first  arises.  the  global  minimum  of V   is  still  at  
tPc  = O.   However.  as  the  temperature  falls.  there  is  a  critical  temperature  Tc  at  
which  the  second  minimum  becomes degenerate   with  the  global  minimum.  (See  
figure  2.1. curve  B.)  This   occurs when   

&C2T2  = l.m2(T)  (2.59)  

which  gives  

T2  =  TJ  _  9TJ  _  -12Am2  
c  - 1 +  8C2TJ/9l.m2  - 1+ 8TJ/Tl  - A(A  +  3e2)  _  32C2/3  (2.60)  

so  that  TI  >  Tc  >  To.  At  temperatures  below  the  critical  temperature.  the  
minimum at  non-zero  tPc   is  the  global  minimum of  V   and  the system   is  in  a phase   
with  spontaneous symmetry   breaking.  referred  to  as  the  asymmetric  phase.  The  
value  of tPc  at  the  global  minimum changes  discontinuously   from  tPc  = 0  to  

tPc  =  v(TC>  =  8CTc 	 (2.61) 
3A  

as  the  temperature passes  through  T  =  Tc.  so  that  there  is  a  first-order  phase  
transition.  As  the  temperature  falls  below  T  =  To.  m2(T) becomes  negative.   the  
local  minimum  at  tPc  = 0   turns  into a   local  maximum  and  the  only  minimum  is  
at  the  non-zero  value  of tPc   = veT).   (See  figure  2.1.  curve C.)   All  of this   occurs  
because  C  #:  O.  For  future  reference.  we  note  that  if C   is  zero  or so   small  that  
v(Tc)  «  v.  then  TI  ~ Tc  ~ To.  and  there  is  effectively  a  (continuous)  second­
order phase   transition  at  temperature T   = Tc.  

2.4.2  e4 »  l.  
When  the  gauge  coupling  constant is   larger relative   to  the  tP4  coupling constant,   
there  are  two  differences  in  the  treatment  required.  First,  the  zero-temperature  
correction  to  the  effective  potential  may  no  longer be   negligible  and,  second,  it  
may  not  be  correct  to  make  the  high-temperature  approximation  that  T  is  very  
much larger than the masses of  all  (shifted) fields.  
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If  we  now  include  the  zero-temperature  radiative  correction.  the  complete  
finite-temperature  effective  potential  becomes  

2 - m 2  A  4  4 [  (  tP~ )  25]  - T  (2.62) V(tPc)  =  TtPc  +  16tPc  +  BtPc  In  M2  -"6  +  VI  (tPc)  

where  M  is  a renormalization scale which may.  if we  wish. be eliminated in  favour  
of the  value  of tPc  at  the  zero-temperature  minimum  of  Y and  

B=_I  (5  2  )  (2.63) 64rr 2  SA  +  3e4  •  

Renormalization  has  been  carried  out  according  to  

d4YI  3 d2 y I  = m2  (2.64) 
dtP;  .. =0  dtP:  ,,=M  =  2 A.  

(Details  of  the  derivation  of  the  zero-temperature  radiative  correction  may  be  
found  elsewhere  [1  ].)  If A is  small  and  A  ~ e4•  then  A 4  is  negligible  compared  to  
e4  and  B  simplifies  to  

3e4  
B  ~ -2'  (2.65) 

64rr  

With  the  mass-squared  matrices  of  (2.40)  and  (2.41)  for  the  (shifted)  scalar  and  
vector  fields.  and  not  making  the  high-temperature  approximation.  

V r (tPc)  =  ~421ooo dy i  { In  [1  - exp  (  -J y2  +  T-2(m2  + 3AtPU4) ) ]  

+  In  [I  -exp  (  -J y2  +  T-2(m2  +  AtPU4»)  ]  

+  31n  [I  -exp  (  _Jy2 +  T-2e2tP~)] -In(1  - e-Y)}.  (2.66)  

We  now  ask  whether  we  should  use  the  high-temperature  approximation  to  
study  the  phase  transitions  when  e4  »  A.  If  we  do  use  the  high-temperature  
approximation  (and  neglect  the  zero-temperature  radiative  correction  for  the  
moment)  then.  as  before.  the  critical  temperature  is  given  by  (2.60).  If e2  <  I  
(as  in  scalar  electrodynamics).  then,  when  e4  »  A,  we  certainly  have  e2  »  A and  
e3  »  A3/ 2,  so  

c  ~ 3e3  
(2.67) 4rr  .  

and  

r2",  -4m2  
c  - -­ (2.68)  

e2  
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At  the  zero-temperature  asymmetric  minimum.  still  neglecting  the  radiative  
corrections.  

",2  _  2  -4m2  
'l'c  - V  =-­ (2.69) 

A  

so  that  
A  

(2.70) Tc2  »  m2  +  -q,:  = 0 
4  

and  
3A T;»  m2  +  -q,:  =  _2m2.  (2.71) 
4  

However.  when  e4  »  A.  

4m2  4  
2  2 22 - e  

Tc  «mv  =e  v  =  ~T' (2.72)  

Therefore.  it  is  not  correct  to  use  the  high-temperature  approximation  for  the  
vector  boson  terms  when  e4  »  A.  

Taking  account  of  this  observation.  we  now  compute  the  values  of  the  
effective  potential  at  the  symmetric  and  asymmetric  minima  to  decide  which  is  
the  absolute  minimum  when  both  exist.  At  the  symmetric minimum.  q,c  is  zero  
and  the  high-temperature  approximation  is  valid  provided  only  that  T2  »  -m2•  

Thus.  

v (q,c  = 0)  =  vi (q,c  = 0)  :::  _  411'2T4 (2.73) 90'  

At  the  asymmetric  minimum.  q,c  =  v.  the  contribution  to  vi (q,c)  involving  
the  gauge  field  mass  etPc  is  exponentially  suppressed  but  the  high-temperature  
expansion  may  still  be  used  for  the  scalar  field  terms.  Thus.  

-T  211'2T4  T2  2  T  2  3/2  
VI  (tPc  =  v):::  -"9()  +  24  (-2m  )  - 1211'  (-2m)  .  (2.74)  

Dropping  the  zero-temperature  radiative  correction  for  the  moment,  

- m4  1I'2T4  m2T2  T  2 3 2  
V(~ =v)=----------(-2m)  1  (2.75) 

c  A  45  12  1211'  

where  we  have  assumed  that  the  value  of the  effective  potential  at  the  asymmetric  
minimum  is  the  same  as  at  zero  temperature  apart  from  the  terms  proportional  to  
T4.  T2  and  T.  This  can  be  shown  to  be  correct  apart  from  corrections  of  higher  
order  in  e2•  Neglecting  the  m2T2  term  and  the  (_2m2)3/2  term  compared  with  
the  T4  term.  it  can  now  be  seen  that  the  symmetric  minimum  is  at  a  lower  value  
of  V  than  the  asymmetric  minimum  when  

T  (45  )1/4  (2.76) >  1I'2A  Iml  ==  TcI  
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Figure  2.2.  Development  of  asymmetric  minimum  with  temperature  in  Higgs  models  
for  411'2 AlII  »  e4  »  A.  Curve  A  is  at  zero  temperature.  curve  B  is  at  Tc.  the  
critical  temperature  for  the  first  order  phase  transition,  and  C  and  D  correspond  to  higher  
temperatures.  

This is   illustrated  in  figure  2.2.  

The  phase  transition  now  occurs.  in  principle.  at  T  =  Tcl  and.  because  the  
value  of the  expectation value   undergoes a   discontinuous change  from   0  to  v.  the  
phase  transition  is  now  first  order.  As  the  system  cools  the  phase  transition  to  
the  asymmetric  phase  may  not  occur  in  practice  until  T  is  much  less  than  Tcl  
because of the  need to tunnel through the potential barrier between the symmetric  
minimum  and  the  asymmetric  minimum.  

When  the  zero-temperature  radiative  corrections  are  taken  into  account  the  
situation  can  change.  The effective   potential  of (2.62)   can  be  recast  (exercise  1)  
in  tenns of  the   value  v  of tPc   at  the  zero-temperature  (asymmetric)  minimum  of  
the  effective  potential,  including  radiative corrections.   as  

V(tPc) - (a  2  2  + tP;)  - =  B  2"v  tPc  - a -4-tPc 2  4  +  tPc 4   T In  v2  + VI   (tPc)  (2.17)  

where  

_\  (22  a  =  2B  3 B  - 8" A)  .  (2.78)  
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Figure  2.3.  Development  of  asymmetric  minimum  with  temperature  in  Higgs  models  for  
e4  »  47r24/11.  Curve  A  is  at  zero  temperature.  curve  B  is  at  Tc.  the  critical  temperature  
for  the  first-order  phase  transition  and  C  and  D  correspond  to  higher  temperatures.  

The  physical  Higgs  scalar  mass  m H  is  given  by  

2  _  d2V I  =  2Bv2(4  - a).  (2.79) 
mH  - dq,l  ~=II 

The  case  of  symmetry  breaking  at  zero  temperature  driven  by  radiative  
corrections,  discussed  by  Coleman  and  Weinberg  [6],  corresponds  to  a  = 0,  i.e.  
to  

m~ =  m~w =  SBv2•  (2.80)  

When  m~ <  m~w (a  >  0),  the  situation  differs  qualitatively  from  that  just  
described  because  there  is  a  local  minimum  of  the  effective  potential  at  q,c  =  0  
due  to  radiative  corrections  already  present  at  T  = O.  Then,  we  must take  account  
of  the  zero-temperature  radiative  corrections  in  deriving  the  development  of  the  
effective  potential  with  temperature.  This  is  illustrated  in  figure  2.3.  

The  case  a  >  0,  where  this  is  necessary.  corresponds  to  

4  
e4 >  -1r2A.  (2.81) 

11  
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2.5  Phase transitions  in   electroweak theory   

In  electroweak  theory,  the  phase  transition  to  be  studied  is  often  from  a  phase  
where  the  S U  (2)  L  x  U  (I) y  gauge  group  is  unbroken  to  one  in  which  only  U  (I  )em  
is  unbroken.  i.e.  it  is  from  a  phase  in  which  the  gauge  fields  mediating  the  weak  
interactions  are  massless  as  well  as  the  photon,  so  that  the  weak  interactions  
are  long  range  like  the  electromagnetic  interaction.  to  a  phase  in  which  only  the  
electromagnetic  interaction  is  long  range.  The  Lagrangian  density  for  electroweak  
theory  has  a  pure  gauge  field  part  

;0  I  Wa  Wait"  I  B  Bit"  (2.82) l..gaugc  =  -4"  It"  - 4"  It"  

where  the  gauge-fixing  term  and  the  Fadeev-Popov  ghosts  have  been  omitted,  

w a  =  a  w a  - a  w a  _  g..,abcwbwc  (2.83) 
"'''  - It"  "It  '"  It"  

and  
Bit"  = altB"  - a"BIt .  (2.84)  

In  (2.82)  and  (2.83).  W;  (a  =  I.  2.  3)  are  the  three  gauge  fields  associated  with  
the  generators  of  SU(2)L  and  Bit  is  the  gauge  field  associated  with  U(I)y.  The  
electromagnetic  field  is  the  superposition  

A",  = cosOwB",  +  sinOwW~. (2.85)  

After  spontaneous  symmetry  breaking  to  U(I)t'm.  AIt  remains  massless  but  the  
othogonal  combination  

ZIt  =  -sinOwBIt  +cosOwW~ (2.86)  

together  with  
w±  =  Wl  ±iW2  (2.87) It  It  It  

becomes  massive.  When  AIt  is  correctly  coupled  to  the  electromagnetic  current  
with  strength  e.  the  Weinberg  angle  Ow  obeys  

g  sin8w  =  e  = g'  cos8w  (2.88)  

where  g  and  g'  are  the  gauge  coupling  constants  for  SU(2)L  and  U(I)y.  

The  SU(2)L  x  U(I)y  gauge  symmetry  is  spontaneously  broken  by  the  Higgs  
doublet  (under  SU(2)Ll  introduced  by  writing  

H  =  (  ~: )  (2.89)  

with  weak  hypercharge  Y  =  1/2.  The Higgs  boson  part  of the Lagrangian density  
(including  the  couplings  to  the  gauge  fields)  is  given  by  

CHiggs  =  (DItH)t(DIt H)  - m2Ht H  - 'A(H t  H)2  (2.90)  
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where  the  covariant  derivative  of  H  is  

Djl.H  =  (a"  +ig~'l'aW: +ig'~Bjl.)H (2.91)  

and  'l'a,  a  =  1,2,3,  are  the  Pauli  matrices.  If the  expectation  value  for  the  Higgs  
doublet  is  introduced  by  writing  

(H)  = (  rfJ)../2  )  (2.92)  

the  zero-temperature  tree-level  term  in  the  effective  potential  is  

m2 - 2  A.  4 
Vo(rfJc)  =  TrfJc  +  "4rfJc'  (2.93)  

Including  the  zero-temperature  and  one-loop  contributions,  and  assuming  that  T2  

is  large  compared  with  all  shifted  masses,  we  have,  for  the  complete  effective  
potential,  

- I 2  2 I  3  A.  4  (  7) 1r2T4 
V(rfJd  = 2m  (T)rfJc  - "jCTrfJc  +  "4rfJc  - NB  +  gNF  9()  

4  (  rfJ~ 25) +BA.  In- -- (2.94) 
Y"c  M2  6  

with  

2  _ 2  (~ e2(1  +  2cos29w)  "h})  T2  (2.95) m  (T)  - m +  2 +  .  2  +  L...  12 
4sm  29w  I  

where  hI  are  the  Yukawa  couplings  of the  fermions,  with  the  largest  contribution  
coming  from  the  top  quark.  Retaining  only  the  gauge  boson  contributions  to  the  
rfJ~ term,  which  is  expected  to  be  a  reasonable  approximation  provided  that  the  
mass  of  the  Higgs  particle  is  not  too  much  larger  than  the  Z  boson,  we  have  

3e3(1  + 2  cos3  9w)  
(2.96) 

C  =  41r  sin3 29w  .  

Dropping  the  A. 2  contributions  to  the  radiative  corrections,  which  are  always  
perturbatively  negligible  compared  with  the  tree  terms,  

B  =  ~ (~)2 I  +2cos49w  _ _  1_"h2.  (2.97) 
4  41r  sin4  29w  641r2  L...  I  

I  

To  study  the  nature  of the  phase  transition,  it  is  important  to  determine  the  sign  of 
 
B.  At  zero  temperature.  (2.94)  is  of  the  same  form  as  (2.62)  with  A.  replaced  by 
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4').  and  can  be  cast  in  the  form  (2.77)  with  the  same  replacement  in  (2.78).  A  little  
calculation  (exercise  2)  shows  that,  when  B  >  0  and  a  >  0,  the  zero-temperature  
effective  potential  always  has  a  minimum  at  f/>c  =  0,  in  contrast  to  the  situation  
when  radiative  corrections  are  neglected  where  there  is  a  maximum  at  tPc  =  0  and  
a  minimum  at  f/>;  =  _m2 lA.  

However,  when  B  <  0,  there  can  only  be  a  minimum  at  tPc  =  0  if  a  <  O.  
However,  a  <  0  is  ruled  out  by  the  requirement  that  the  mass-squared  m~ 
of  the  physical  neutral  Higgs  scalar  particle  given  in  (2.79)  should  be  positive.  
Thus,  there  is  never  a  minimum  at  f/>c  =  0  when  B  <  0  and  the  situation  is  
then  qualitatively  the  same  as  in  the  absence  of  the  zero-temperature  radiative  
corrections:  the  phase  transition  is  first  order.  

The  sign  of  B  may  be  determined  as  follows.  We  shall  retain  only  the  largest  
Yukawa  coupling  which  is  the  top  quark  coupling  h,.  (Retaining  more  Yukawas  
only  strengthens  the  conclusion.)  The  corresponding  Lagrangian  is  

Ltop  =  -h, Q;  i1'2  HtR  + h.c.  (2.98)  

where  Q,  is  the  SU(2)L  doublet  

(2.99) Q,  = (  ~ )  L·  

Taking account  of the  three colours  of top quark contributing to the  loop,  L /  G}  
is  replaced  by  3h:  in  (2.97).  The  top-quark  mass  term  deriving  from  (2.98)  is  

hrtLtRtPcI..fi  +  h.c.,  so  the  top  quark  mass  is  

I  
m,  =  ..fihrtPc.  (2.100)  

Also,  the  Wand  Z  masses  are  given  at  tree-level  by  

2  1  2A.2  2  1 2  II  2A.2 
mw  = 4g  'l"c  mz  =  ;{  sec  t1wg  'l"c·  (2.101)  

With  a  measured  top  quark  mass  of  about  175  GeV,  and  an  empirical  value  
of  sin20w  determined  by  the  measured  Wand  Z masses  of  0.243,  so  that  
f/>c  ~ 263  GeV,  we  find  that  

hr  ~ 0.94.  (2.102)  

With  e2/47r  =  1 I  137,  we  find  from  (2.97)  that  B  is  negative.  
We  also  have  to  decide  whether  it  is  correct  to  assume  that  T2  is  large  

compared  with  all  (shifted)  masses.  Using  the  high-temperature expansion  and  
neglecting  the  zero-temperature  radiative  corrections,  we  see  from  (2.95)  that,  as  
in  (2.60),  

_I  =  __ I  [~+ 2Ow)  +  h~ _  ~ (I  +2cos30w)2] e2(1  +  2 cos

Tc2  m2  2  4  sin2  20w  4  87r2').  sin3 20w 
 

(2.103)  
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where,  again,  we  have  retained  only  the  top-quark  Yukawa  coupling.  Provided  
e2  »  A  »  e6 ,  we  estimate  

r.2  '"  _2m2  (2.104) c  - •  

As  in  the  Higgs  model,  the  shifted  masses  for  the  Higgs  scalars  are  of  order  
_m2  and  the  high-temperature  approximation  is  not  too  unreasonable.  The  
greatest  danger  for  the  high-temperature  approximation  in  the  Higgs  model  with  
e4  »  A  arose  from  the  gauge  field  mass.  In  the  present  case,  dropping  A/2  
in  the  numerator  of  (2.103)  and  using  the  value  of  tP;  at  the  zero-temperature  
asymmetric  minimum  tP;  =  _m2 lA,  we  can  estimate  that  

r.2  A  r.2  A 
_c_  '" 2­ --I- ~ 1.5'2'  (2.105) 
m2  - e2  e w  mz  

Thus,  if  A  ~ e2  ~ 0.09,  the  high-temperature  approximation  may  again  be  not  
too  unreasonable.  

This  discussion  suggests  that  the  electroweak  phase  transition  is  effectively  
second  order,  because  C,  defined  in  (2.45),  is  small  in  the  sense  discussed  at  the  
end  of section  2.4.1.  For  T  >  Tc.  the  system  is  in  the  symmetric  phase  in  which  
tPc  =  0  and  all  gauge  bosons  are  massless.  For  T  <  Te,  the  system  is  in  the  
asymmetric  phase  for  which  tPc  ".  0,  the  W±  and  Z  gauge  bosons  acquire  a  
mass  and  the  symmetry  is  broken  from  SU(2)L  x  U(l)y  to  U(l)em.  The  critical  
temperature  Tc  given  by  (2.103)  is  of  the  same  order  of  magnitude  as  the  zero­
temperature  value  of  tPc  at  the  asymmetric  minimum  of  the  effective  potential  
provided  that  A  ~ e2.  It  was  estimated  before  (2.102)  that  tPc  ~ 263  GeV  and  so  
Te  should  be  of this  order  of magnitude.  

2.6  Phase transitions  in   grand unified   theories  

Electroweak  theory  combines  the  weak  and  electromagnetic  interactions  in  a  
single  model  with  SU(2)L  x  U(l)y  gauge  group  but  achieves  no  unification  
of  these  interactions  with  the  strong  interaction.  It  is  possible  that  the  weak,  
electromagnetic  and  strong  interactions  are  unified  in  a  theory  involving  a  larger  
gauge  group  (a  grand  unified  theory  or  GUT),  perhaps  with  a  single  gauge  
coupling  constant.  Once  such  a  unification  has  been  assumed,  the  coupling  
constants  g,  g'  and  gs  (the  QCD  coupling  constant)  are  related  by  group  theory  
factors  to  a  single  GUT  coupling  constant  gG  for  the  grand  unified  group.  The  
values  of  the  renormalized  coupling  constants  depend  on  the  renormalization  
scale  M  and,  if  the  coupling  constants  geM),  g' (M)  and  gs(M)  obey  the  gauge  
theoretic  relationships  of the  grand unified  group  at  one  such  scale  M  = M G,  they  
cannot  obey  these  relationships  at  lower  energy  scales.  This  is  because  at  energy  
scales  below  MG  the  extra  gauge  fields  associated  with  the  enlargement  of  the  
gauge  group  to  the  grand  unified  group  may  be  ignored.  (They  acquire  masses  on  
the  scale  of  MG.)  Then  geM),  g'(M)  and  gs(M)  run  differently  with  M  when  the  
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re normalization  group  is  deployed  to  derive  their  dependence  on  M.  However,  
for  energy  scales  greater  than  MG.  all  gauge  fields  are  on  the  same  footing  and  
there  is  a  single  gauge  coupling  constant  gG  developing  in  accordance  with  the  
renormalization  group  equation  of  the  GUT.  

The simplest example  of a  grand  unified group that  is  large enough to contain  
SU(3)c  x  SU(2)L  x  U(1)y  of the  standard  model  is  SU(5)  and  we  shall  use  this  
example  to  illustrate  phase  transitions  in  GUTs.  If  the  renormalization  group  
equations  are  used  to  run  the  low-energy  values  of  the  gauge  coupling  constants  
to  the  scale  M  =  MG  at  which  the  SU(5)  relationships  

gs(MG)  = g(MG)  =  jig'(MG)  =  gG(MG)  (2.106)  

hold,  then  upon  inputting  the  values  of  the  strong  and  electromagnetic  coupling  
constants  at  M  =  mz,  the  unification  scale  is  found  to  be  of  order  1015  GeV.  
In  addition,  there  is  a  prediction  for  sin2 9w(mz)  at  M  =  mz  of  around  0.21,  
which  differs  significantly  from  the  observed  value  of around  0.23.  Nevertheless,  
we  shall  use  the  SU(5)  GUT  as  a  simple  illustration  of  the  way  in  which  phase  
transitions  work  in  a  GUT.  In  section  2.7,  we  shall  consider  supersymmetric  GUTs  
in  which  the  prediction  for  sin2(mz)  can  be  brought  into  line  with  experiment  to  
a  high  degree  of  accuracy.  

In  the  SUeS)  GUT,  the  grand  unified  phase  transition  is  from  the  SU(5)  
symmetric  phase  to  the  SU(3)c  x  SU(2)L  x  U(I)y  symmetric  phase  and  is  
followed  at  a  lower  temperature  by  the  electroweak  phase  transition  described  
in  the  previous  section.  We  expect  the  critical  temperature  for  the  grand  unified  
phase  transition  to  be  of  order  1015  GeV  (the  energy  at  which  the  spontaneous  
symmetry  breaking  occurs)  and,  at  such  high  temperatures.  the  expectation  values  
of  the  electroweak  Higgs  scalars  (of  order  200  Ge V)  are  negligible.  Thus,  to  
describe  the  grand  unified  phase  transition  we  need  only  retain  the  Higgs  scalars  
responsible  for  breaking  the  SU (5)  gauge  group,  whose  expectation  values  are  on  
the  1015  GeV  scale.  

The  grand  unified  Higgs  scalars  <I>  belong  to  the  24-dimensional  adjoint  
representation  of SUeS):  

24  

<I>  =  L  tPala  (2.107)  

a=1  

where  la  are  the  SU(5)  generators  in  the  fundamental  five-dimensional  
representation.  Suppressing  the  gauge-fixing  term  and  the  Padeev-Popov  ghost  
term,  the  finite-temperature  Lagrangian  density  (apart  from  a  possible  tr  <1>3  term)  
is  

c  =  -m~ tr  <1>2  - AI  (tr  <1>2)2  - A2  tr  <1>4  + tr(Dp.  <1»2  - t tr(Fp.v  FP.V).  (2.108)  

In  (2.108),  the  covariant  derivative  Dp.  <I>  is  given  by  

Dp.<1>  =  ap'  <1>  +  igG[Ap.,  <1>]  (2.109)  
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where  
24  

A",  ==  LAa",ta  (2.110)  

a=l  

with  Aa",  the gauge fields  in the adjoint representation of  S U (5), and  the  transition   
to a   finite-temperature theory  is  made  by  the  replacement  of  a",  by a""   as  in  (2.13).  
The gauge  field   strength  F",,,  is  given by   

F",,,  ==  a",A"  - a"A",  + igG[A""  A,,]  (2.111)  

with  the  transition  to  the  finite  temperature  being  made  in  the  same  way.  The  
fermionic  terms  have  been  dropped  in  (2.108)  because  quark  and  lepton  masses  
are negligible  on   the grand   unified  scale.  

For  the  breaking  of  SU(5)  to  SU(3)c  x  SU(2)L  x  U(l)Y,  we  take  the  
expectation value   of the  field  cl>  to  be of  the  form  

t;c  .  ( 
(cl»  = v'I5  dlag   I. I. I.  -2'  

3 -2 3) .   (2.112)  

«(cl»  must  be  traceless  because the   matrices  ta  are.)  This can   be  shown  to  be  the  
lowest energy   state  at  zero  temperature for   

7  
AI>  --A2 A2  >  O.  (2.113) 

30  

The  finite-temperature  effective  potential  can  then  be  written.  for  temperatures  
large compared  to   all  masses,  as  

- = 21  2  2 + 4 I (   7) 4   (  7) 7r 2T4 
V(t;c)  m )(T)t;c  AI  +  30 A2  t;c  - NB  +  gNF  9()  

+ Bt;c  4[ In  (t;;) M2  -"6  25]   (2.114) 

where  

I 
m~(T) = m~ +  60(l30AI  +47>..2  +75g~)T2 (2.115)  

25  4  
(2.116) B  = 2567r 2gG  

and the   zero-temperature radiative  correction  has  been  renormalized  at  mass  M   as  
in  section  2.4.  In  (2.114)  the  A~ and  A~ contributions are   always  small  compared  
with  the  tree  terms  in (2.114)  and   have  been  dropped.  

If g~ «  AI,  A2  we  may  neglect  the  zero-temperature  radiative  correction.  
There  is  then  a  second-order phase   transition  with  critical  temperature  Tc  given  
by  

-6Om~T2- ....  (2.117) 
c  - 130A)  + 47>..2  +  7Sg~ 
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For  T  >  Tc.  the  system  is  in  the  SU(5)  symmetric  phase.  for  which  tPc  =  O.  and  
all  gauge  bosons  are  massless.  For  T  <  Tc,  tPc  is  non-zero,  the  system  is  in  the  
SU(3)c  x  SU(2)L  x  U(I)y  symmetric  phase,  and  only  the  electroweak  gauge  
bosons  are  massless.  By  the  same  sort  of argument  as  in  the  previous  section,  Tc  
should  be  of order  1015  GeV.  

However,  if  g~ »  A I.  A.2.  then  a  discussion  similar  to  that  given  for  the  
Higgs  model  in  section  2.4  shows  that  a  first-order  phase  transition  takes  place.  
In  the  case  of  a  GUT,  this  conclusion  is  not  negated  by  Yukawa  couplings  of  
fermions  giving  additional  contributions  to  the  coefficient  B.  because  quarks  and  
leptons  do  not  couple  to  the  grand  unified  Higgses.  This  is  an  important  difference  
compared  with  the  electroweak  phase  transition.  

2.7  Phase transitions  in   supersymmetric GUTs   

If elementary  particle  theories  possess  supersymmetry,  then  each  (complex  scalar)  
spin-O  particle  is  paired  with  one  chirality  of  a  spin-!  particle  in  the  same  so­
called  'chiral  supermultiplet'  and  each  spin-I  vector  particle  is  paired  with  a  
spin-!  particle  of  a  single  chirality  in  the  same  so-called  'vector  supermultiplet'.  
The  quarks  and  leptons  have  supersymmetric  partners  referred  to  as  'squarks'  
and  'sleptons·.  the  Higgs  scalars  have  supersymmetric  partners  referred  to  as  
'Higgsinos'  and  the  gauge  bosons  are  paired  with  'gauginos·.  In  the  absence  
of  supersymmetry  breaking.  particles  in  the  same  supermultiplet  have  the  
same  mass.  Of  course,  since  at  the  time  of  writing  we  have  not  observed  
supersymmetric  partners  of the  known  particles  ('sparticles·).  there  must  be  some  
(spontaneous)  supersymmetry  breaking  to  produce  substantial  mass  splittings  
within  supermultiplets.  

The  presence  of  these  extra  sparticles  can  be  very  important  for  the  
discussion  of  phase  transitions  at  temperatures  large  compared  to  the  sparticle  
masses.  In  addition.  the  supersymmetry  transformations  transforming  particles  of  
different  spin  within  a  supermultiplet  into  each  other  strongly  constrain  the  form  
of  the  Lagrangian  and  the  tree-level  effective  potential.  with  further implications  
for  phase  transitions.  These  supersymmetry  transformations  may  be  local  or  
global  depending  respectively  on  whether  the  parameters  of  the  transformation  
do or do not depend on the point in spacetime.  In this section the case  of globally  
supersymmetric  GUTs  will  be  discussed  [7-12]  and  the  locally  supersymmetric  
(supergravity)  case  will  be  discussed  in  the  next  section.  (For  a  systematic  
development of globally and locally supersymmetric theories see  [14].)  

In  general.  in  a  supersymmetric  theory,  the  Lagrangian  and  the  tree-level  
effective  potential  are  determined  once  the  superpotential  W  is  given.  For  
example.  for  a  theory  with  a  single  scalar  field  tP  together  with  its  supersymmetric  
partner.  the  superpotential  for  a  renormalizable  theory  takes  the  form  

w  =  !mtP2  +  !l.t/J3  (2.11S)  
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the bosonic part of  the Lagrangian density  is  

= lai aw/2  
.cbosonic  al'tPtal'tP  - (2.119)  

and the   tree-level  effective potential  is   

-_l ""ii4> aw v   l2  = ImtP   + )..tP 212.  (2.120) 

In  a  supersymmetric  SU(S)  GUT,  the  generalization  of  this  renormalizable  
superpotential is   

w =   !m tr Cl>2   +  l)..  tr Cl>3   (2.121)  

with  Cl>  defined  in  (2.107), and   the tree-level  effective  potential  is   

V  = !tr lmCl>+)..(CI>2  - !trCl>21)12+g~tr([CI>, Cl>t]2).  (2.122)  

The last   term  in  (2.122) is  the   so-called  • D-term'  that  arises in   a  supersymmetric  
gauge  theory  and  the  first  term,  which  is  independent  of the   gauge  group,  is  
referred  to  as  the  • F -term'.   At  T  =  0  (and  in  the  absence  of supersymmetry   
breaking), the  effective  potential  (2.122)  has  degenerate  minima  (exercise  3)  with   
V  =  0,  namely  

(Cl»  =  0  (2.123)  

m  . (Cl»  = 4  3)..   dlag(l.  I, I, I, - )  (2.124)  

and  
(Cl»  =  ~ diag(2, 2,   2, -3,  -3).   (2.12S)  

The  minima  (2.123),  (2.124)  and  (2.12S)  correspond  respectively  to  SU(5)  
symmetric,  SU(4)  x  U(l)  symmetric  and  SU(3)  x  SU(2)  x  U(I)  symmetric  
phases.  

At  finite  temperature,  the  degeneracy  of these   supersymmetric  minima  is  
lifted  by the   T4  terms  and  by  T2tr(CI>tCl»  =  La !ltPal2T2   terms.  As  in  (2.32),  

the  coefficient  of the   T4  term  depends  on  the  value  of  NB  + iN  F  for  states  
light  on  the  scale  of the   temperature  T.  For  the  SU(S)  symmetric  phase,  the  
24  gauge  fields  together  with  their  gauginos contribute   90 towards   NB  +  iN F.  

Each fermion   generation has   three  doublets of  left-chiral   quarks, one  for  each  of   
the  three colours,  six   right-chiral quarks,  a   left-chirallepton doublet,   and  a  right­
chiral  (charged)  lepton.  These  give  nG  =  3  copies of  the   5 + 10   representation  
of SU(S).   These  three  generations  of quarks   and  leptons,  together  with  their  
associated  squarks and  sleptons,  contribute   ~ to  NB  + iN  F.  In  total,  this  gives  

the coefficient  of  the  T4  term in   the  temperature-dependent effective  potential   

]1"2  (  7)  23  2  
- 90  NB  + gNF   =  -8]1"  SU(5) symmetric  phase.   (2.126)  
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Por  the  S U  (3)  x  S U  (2)  x  U  (I)  symmetric  phase,  the  12  gauge  fields  together  
with  their  associated  gauginos  contribute  45  towards  NB  +  ~N F  and,  for  the  
S U  (4)  x  U (I)  symmetric  phase,  the  16  gauge  fields  together  with  their  gauginos  
contribute  60  towards  NB  +  iN F.  In  each  of  these  two  cases,  the  matter  field  
content  is  the  same  as  for  the  SU(5)  symmetric  phase  and  we  find  that  

",2  (  7)  -19  . 
90  NB  +  gNF  =  -s-1r2  SU(3)  x  SU(2)  x  U(l)  symmetric  phase  

(2.127)  

1r2  (  2 7)  -61  - NB+-NF  =-1r  SU(4)  x  U(I)  symmetric  phase.  (2.12S) 
90  8  24  

If  a  copy  of  5 +  5  is  included  to  provide  the  two  electroweak  Higgs  doublets  
(plus  Higgsinos)  needed  to  give  masses  to  both  up-like  and  down-like  quarks  in  
a  supersymmetric  theory,  then  there  is  an  additional  contribution  -5",2/12  to  
(2.126)  and  _",2/6  to  (2.127),  in  the  latter  case  from  the  two  SU(2)L  doublets  
that  are  all  that  survive  from  the  5  +  5 after  spontaneous  symmetry  breaking  of  
SU(5)  by  the  expectation  values  of  the  adjoint  Higgs  scalars.  (The  surviving  
adjoint  Higgs  scalar  states  are  too  heavy  to  contribute  to  the  temperature­
dependent corrections  to  the  effective  potential  for  temperatures  below  the  grand  
unification  scale.)  In  the  SU(4)  xU(I)  phase,  the  completeS+Sbecomes  massive  
and  fails  to  contribute  to  the  temperature-dependent  corrections.  The  values  of  

~(NB +  tNF)  in  (2.126),(2.127)  and  (2.128)  are  then  modified  to  ~1r2, ~",2 
and  ~1r2, respectively.  Thus,  the  T4  term  favours  the  SU(5)  symmetric  phase  
over  the  SU(3)  x  SU(2)  x  U(l)  and  SU(4)  x  U(l)  symmetric  phases,  which  
remain  on  the  same  footing.  This  conclusion  is  only  strengthened  by  the  inclusion  
of the  adjoint  Higgs  supermutiplet  which  provides  extra  light  states  in  the  SU(5)  
symmetric  phase.  If  the  theory  contains  more  than  one  pair  of  Higgs  multiplets  
coming  from  5 +  5,  then  the  SU(5)  symmetric  phase  continues  to  be  favoured  
over  the  other  two  phases  but  the  SU(3)  x  SU(2)  x  U(l)  symmetric  phase  is  
favoured  over  the  S U  (4)  x  U  ( 1)  symmetric  phase,  which  is  the  assumption  we  
shall  make  in  what  follows.  

Clearly,  the  SU(5)  symmetric  phase,  for  which  the  scalar  expectation  value  
is  zero,  minimizes  the  T2~~ term  as  well  as  the  T4  term.  Thus,  the  theory  
appears  to  favour  the  SU(5)  symmetric  phase  at  all  temperatures.  However,  
at  temperatures  below  lOO  GeV-I  TeV  the  (non-perturbative)  supersymmetry  
breaking  mechanism  will  lift  the  degeneracy  of  the  three  phases  more  than  
the  temperature-dependent  terms  and  may  favour  the  SU(3)  x  SU(2)  x  U(1)  
symmetric  phase.  At  higher  temperatures  the  temperature-dependent  terms  
dominate.  This  suggests  that  the  universe  is  in  an  SU  (5)  symmetric  phase  down  
to  temperatures  of  100  Ge V-I  Te V.  

This  conclusion  is  modified  by  the  running  of  the  gauge  coupling  constant  
gS  for  SU(5)  with  temperature.  This  may  result  in  gS  becoming  strong  at  
temperatures  of  order  109_1010  GeV.  Then,  confinement  may  result  in  fewer  
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massless  states.  (The  SU(S)  coupling  becomes  strong  at  a  higher  temperature  
than  the  SU(4)  and  SU(3)  couplings.)  Then  one  of  the  other  two  phases  may  
become  the  absolute  minimum  and,  eventually,  tunnelling  may  occur  to  one  of  
the  other  phases.  In  general,  running  coupling  constants  ga(J,L)  and  ga(M)  at  
energy  scales  #J- and  M  are  related  by  

1611"2g;2(#J-)  =  I 611"  2g;2 (M)  +ba  In  (::)  (2.129)  

where  the  renormalization  group  coefficient  ba  is  given  by  

ba  =  -¥ct(Go )  + j  LC2(Ro )  +  t L C2(So).  (2.130)  
Ra  Sa  

In  (2.130),  the  group  theory  factor  CI(Ga )  for  the  group  Ga  is  related  to  the  
structure  constants  fafJy  by  

cl8afJ  =  fay&f/Jy&  (2.131)  

the  group  theory  factor  c2(Ra)  for  the  representation  Ra  of  the  group  is  given  in  
terms  of  the  matrices  Ta  representing  the  generators  of  Ga  in  the  representation  
Ra  by  

C28afJ  =  tr(TaT/J)  (2.132)  

and  the  summations  are  over  chiral  fermion  representations  Ra  of  G a  and  scalars  
in  representations  Sa  of  Go.  For  a  supersyrnmetric  theory,  each  gauge  field  is  
accompanied  by  a  gaugino  in  the  adjoint  representation,  so  that  

-¥ct(Ga)  -+  -¥Cl(Ga)  +  ict(Ga)  =  -3q(Ga).  (2.133)  

Also,  each  chiral  fermion  is  accompanied  by  a  complex  scalar  so  that  

j C2(Ra )  -+  jC2(Ra)  +  lC2(Ra )  = c2(Ra ).  (2.134)  

Thus,  in  a  supersymmetric  theory  

ba  = -3CI(Ga)  +  L C2(Ra)  (2.135)  
Ra  

where  the  sum  is  over  all  chiral  supermultiplets.  Identifying  the  energy  scale  #J­
in  (2.129)  with  T,  and  recasting  the  renormalization  group  equations  in  terms  of  

- 2/4  . aa  =  ga  11" ,  gives  

-I  -I  ha  (M) aa  (T)  =  aa  (M)  + - In  - .  (2.136) 
211"  T  

For  SUeS),  

- 1 Cl  (SU(s»  = 5  C2(S)  = C2(S)  = ~ c2(IO)  =  ~. (2.137)  



Phase  transitions  in  super gravity  theories  55  

With  nG  = 3  generations  in  5 +  10  and  NH  sets  of  Higgs  scalars  in  S,  we  have  

bs  =  -9+  ~NH (2.138)  

and,  for  NH  =  2,  
bs  = -8.  (2.139)  

It  is  convenient  to  choose  

M  =  Mx  =  2  x  1016  GeV  (2.140)  

which  is  the  energy  scale  at  which  the  low-energy  (supersymmetric)  SU(3)  x  
SU(2)  x  U(I)  coupling  constants  reach  a  common  value  so  that  grand  unification  
may  occur.  At  this  scale,  

as(Mx)  ~ is.  (2.141  )  

If  we  take  the  criterion  for  the  SU(5)  coupling  constant  to  become  strong  to  be  
as (T)  ~ I,  then  the  corresponding  temperature  is  

T  ~ 6.5  x  10-9 M  ~ 108  GeV.  (2.142)  

It  is  at  this  temperature  that  we  expect  that  either  the  SU(3)  x  SU(2)  x  U(I)  or  
the  SU(4)  x  U(I)  symmetric  phase  becomes  the  absolute  minimum.  Eventually  
tunnelling will  occurto whichever of these phases is  the  absolute minimum.  If it  is  
the  SU(3)  x  SU(2)  x  U(I)  symmetric  phase,  then  the  universe  will  continue  in  this  
phase  until  the  coupling  constant  g4  becomes  strong  at  some  lower  temperature.  

In  these  globally  supersymmetric  theories,  because  the  zero-temperature  
effective  potential  is  zero  when  supersymmetry  is  unbroken,  the  cosmological  
constant  is  zero  in  each  of the  SU(5),  SU(4)  x  U(I)  and  SU(3)  x  SU(2)  x  U(I)  
phases  until  supersymmetry  breaking  becomes  non-negligible  (with  respect  to  T)  
for  temperatures  below  102_103  GeV.  

2.8  Phase transitions  in   supergravity theories   

Up  to  now  we  have  been  discussing  theories  with  global  supersymmetry.  A  
theory  with  local  supersymmetry  is  necessarily  a  theory  which  contains  gravity  
(supergravity).  The  reason  is  that  the  supersymmetry  algebra  contains  the  
generator  Pp.  of  translations  and  when  we  allow  supersymmetry  transformations  
that  depend  on  the  point  in  spacetime  (local  supersymmetry),  we  have  to  consider,  
among  other  things,  translations  that  vary  from  point  to  point  in  spacetime.  Thus,  
local  supersymmetry  contains  general  coordinate  transformations  of  spacetime  
and  so  is  a  theory  of gravity.  

In  phenomenologically  acceptable  theories,  the  supersymmetry  breaking  
scale  Ms  is  large  (typically  J010-1011  GeV)  where  M;  is  the  expectation  value  
of  the  auxiliary  field  of  the  scalar  responsible  for  supersymmetry  breaking.  For  
example,  in  theories  with  F -term  supersymmetry  breaking,  at  tree  level,  a  fermion  
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has  a  supersymmebic  partner  of  lower  mass  than  itself  as  well  as  one  of  higher  
mass  than  itself.  Since  this  does  not  occur  in  the  real  world,  it  is  necessary  
for  there  to  be  significant  quantum  corrections  to  avoid  this  problem,  though  
not  so  big  that  the  hierarchy  problem  is  no  longer  solved.  This  is  the  origin  
of  the large  supersymmetry  breaking  scale.  In  these  circumstances,  the  effects  
of quantum  gravity  can  no  longer  be  neglected.  In  particular,  in  the  presence  of  
supersymmetry breaking,  scalar particles acquire  masses  of order M; / m  p  (where  
mp  ~ 1.2  x  }OI9  GeV  is  the  Planck  mass)  which  are  oforcier  102  GeV.  

Once  gravitational  effects  are  important,  we  should  allow  not  only  that  the  
superpotential  may  contain  non-renormalizable  terms  but also  that  there  may  be  
non-renormalizable  kinetic  terms.  Thus,  for example,  the  scalar  field  kinetic  terms  
take  the  form  

o2K  
(2.143) OlPiOlPj  0l£tPiOl"lPj  

where  K(lPi,  lPi>  is  referred  to  as  the  Kiihler  potential.  It  turns  out  [13]  that  the  
complete  supergravity  Lagrangian  can  be  expressed  in  terms  of  

G  =  K  +lnlWl2  (2.144)  

apart  from  couplings  to  gauge  fields,  which  involve  the  gauge  kinetic  function.  It  
will  often be convenient to work in  units where the reduced Planck mass  Mp  =  I,  
where  Mp  is  defined  by  

Mp2  ==  87rGN  (2.145)  

where  G N  is  Newton's  constant,  so  that  

Mp  ~ 2.44  x  1018  GeV.  (2.146)  

In  these  units,  the  zero-temperature  effective  potential  takes  the  form  

V  = eG(Gi(G-I)~Gj - 3)  (2.147)  

where  the  scalar  fields  have  been  written  as  lPi.  their adjoints  as  lPi •  and  derivatives  
ofG  as  

oG Gi  ==  oG  (2.148) Gi  ==  alPi• olPi  
and  

a2G i  __  •  (2.149) 
G j  ==  alPi  olPj  

The  inverse  (G-I)~ obeys  

(G-I)~G~ = 81.  (2.150)  

In  particular, in the case  of a single gauge-singlet chiral superfield  ~ with  minimal  
kinetic  terms  arising  from  

G  = lP·lP  + In  IWl2  (2.151  )  
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we  have  

v=e~·~(I~; 2 +q,*wI -3IWI2)  (2.152) 

instead  of V   =  law/aq,1 2  for  the  globally  supersymmetric  case,  as  in  (2.120).  
Consideration  of  the  supersymmetry  transformation  laws  of  scalar  fields  and  
their fermionic   superpartners shows   that the  criterion  for  supersymmetry  breaking   
is  that  aw /aq,  + q,*W   should  be  non-zero  [14].  Thus,  whereas  the  globally  
supersymmetric  theory  vacua  with  unbroken  supersymmetry  had  V  =  0,  in  the  
locally  supersymmetric case  (with   minimal  kinetic  terms)  supersymmetric vacua   
have  

V  =  -3e~·~IWI2 (2.153)  

More  generally,  we  may  consider  gauge  non-singlet  chiral  superfields  4>;.  
In  that  case,  the  supergravity  Lagrangian  [13]  also  involves  the  gauge  kinetic  
function  fab.  For the  minimal  choice of  gauge  kinetic function  

fab  =  8ab  (2.154)  

the  gauge kinetic   term  
-1 Re   fabFaJl.vF/:v  (2.155)  

simplifies  to  - 1 FaJl.v  Ft" .  Then.  with  minimal  kinetic  terms,  the  zero­
temperature effective  potential   takes the   form  

V  =  e~j~J (I :: 2  +q,i*wI - 31W12)  + ~g2Gi(Ta)ijq,jGk(Ta)klq,1  (2.156)  

where  we  have  assumed  a  simple  gauge  group  with  gauge  coupling  constant  g.  
and  

1  aw  
G i  = q,i*  + W  aq,i   .  (2.157)  

If  supergravity  is  unbroken,  study  of  the  supersymmetry  transformation  laws  
shows  that we   must have   

aw Gi(Ta);jq,j  =  0  and  aq,i  + q,;*W  =  0  (2.158)  

and supersymmetric  vacua   have  

V  =  _3elfljlflj  IWI2.  (2.159)  

There  is  no  longer  any  requirement  that  supersymmetric  minima  should  be  
degenerate  in  energy  at  T  =  0  nor  that  they  should  have  lower  energy  than  all  
other vacua.   

In  the  high-temperature  limit,  (2.32)  stilI  applies  to  the  one-loop  
temperature-dependent  correction  to  the  effective  potential  provided  that.  in  
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the  case  that  the  kinetic  terms  are  non-minimal,  we  first  construct  fields  with  
i  
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canonical  kinetic  terms  by  field  redefinition.  This  means  that.  for  scalar  fields  tP
(and  their  fermionic  superpartners),  we  have  to  write  

tPi  =  (G-I/l>{(tPj)N  (2.160

and  for  the  gauginos  

Aa  =  (Re  fab)-1/2(Ab)N  (2.161

where  (tPj)N  and  (Ab)N  are  the  normalized  fields.  The  relevant  mass  matrices
are  obtained  from  the  standard  supergravity  Lagrangian.  The  outcome  [15-18]  i
particularly  simple  in  the  case  of  minimal  kinetic  terms.  Then  

-T  1r2T4  (  7) 
VI  = - -- NB+-NF 

90  8  

T2  [3  I] +  l2eG  2(A  +  B)  +  (C  +  N)(C  - 2)  +  2C2  +  C - I  (2.162

where  

A  =  dGijGj  +  GiGijGj  (2.163

B  =  Gi)d)  (2.164

C=GiGi  (2.165

and  N  is  the  number  of  chiral  superfields.  In  practice,  N  is  often  large.  Fo
example,  if  the  matter  field  content  is  that  of  the  minimal  SU(5)  GUT,  there  are
nG  =  3  generations  in  the  5 +  10  representation  contributing  45  to  N,  two  copie
of  5  or  5  for  electroweak  Higgs  contributing  \0  to  N  and  one  copy  of  24  fo
the  grand  unified  Higgs  scalars  contributing  24  to  N,  leading  to  a  total  value  o
N=79.  

Provided  that  all  of the  couplings  in  the  superpotential  are  of the  same  orde
of  magnitude,  in  units  where  the  reduced  Planck  mass  is  I,  we  can  then  take  the
large-N  limit  to  obtain  

-T  1r2T4  (  7)  T2  G  .  
VI  =  --- NB  +  -NF  +N-e  (GiG'  -2)  (2.166

90  8  12  .  

Provided  that  the  changes  in  V~ generated  by  non-minimal  kinetic  terms  do  no
introduce  extra  factors  of  N  (which  is  true  for  most  choices  of G),  this  is  still  the

large-N limit  of vf in that case.  For any particular choice  of KIDder potential and
superpotential  and,  therefore,  of G,  the  discussion  of phase transitions proceeds as
before  with  the  modified  finite-temperature  corrections  to  the  effective  potentia
of (2.162).  
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2.9  Nucleation  of true  vacuum   

In  sections  2.4  and  2.6,  we  have  found  that  first-order  phase  transitions  may  occur  
as  the  universe  cools.  If  the  phase  transition  is  first  order,  it  will  be  necessary  for  
the  universe  to  tunnel  out  of  the  metastable  minimum  [19-21]  (false  vacuum)  to  
reach  the  absolute  minimum  (true  vacuum).  If  the  tunnelling  rate  is  small,  this  
may  occur  at  temperatures  very  much  lower  than  the  temperature  Tc1  of  (2.76)  
at  which  the  energy  of  the  zero- (and  low-)  temperature  vacuum  drops  below  
that  of  the  high-temperature  vacuum.  In  what  follows,  we  shall  approximate  the  
tunnelling  rate  by  its  T  =  0  value  and  study,  for  simplicity,  the  case  of  a  single  
scalar  field  cp.  

In  the  semi-classical  limit  (small  h)  the  probability  per  unit  time  per  unit  
volume  for  formation  of a  bubble  of true  vacuum  r  is  given  by  [19]  

r  =  Ae-B/ Ii  (2.167)  

where  
B  =  SE  (2.168)  

with  SE  the  Euclidean  action  for  a  solution  of  the  Euclidean  Euler-Lagrange  
equations  which  satisfies  the  boundary  conditions  that  cp  approaches  the  false  
vacuum  (metastable  minimum)  as  the  Euclidean  time  tE  ~ ±oo,  and  with  zero  
Euclidean  time  derivative  at  tE  =  0,  where  

tE  ==  it.  (2.169)  

This  is  referred  to  as  the  'bounce'  solution  (because  it  turns  around  and  bounces  
back  to  the  false  vacuum.)  The  tunnelling  is  dominated  by  the  solution  for  cp  that  
gives  the  smallest  value  of  SE.  The  derivation  of  this  result  is  by  studying  the  
imaginary  part  of  the  effective  potential  in  the  false  vacuum.  The  coefficient  A  
is,  in  general,  more  difficult  to  calculate  [20].  However,  since  it  does  not  appear  
in  an  exponent,  an  estimate  on  dimensional  grounds  is  sufficient.  At  T  =  0,  we  
may  expect  A  to  be  of  order  M4  where  M  is  an  appropriate  mass  scale,  such  as  
the  height  of  the  potential  barrier  to  be  tunnelled  through  or  (see  [21])  the  value  
of  (d2V  /dcp2)  1/2  at  the  metastable  minimum,  which  will  usually  be  of  the  same  
order  of magnitude.  

For  a  single  real  scalar  field.  the  Euclidean  action  takes  the  form  

SE  =  f d4x  (!aIlCPallcp  +  V(cp»  (2.170)  

with  the  metric  the  positive-definite  metric  of  four-dimensional  Euclidean  space,  
and  the  Euclidean  Euler-Lagrange  equation  is  

a2cp 
0/lollq,  = - +  V2q,  =  V'(q,).  (2.171) 

at2 
E  
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It  can  be  shown  that  the  bounce  which  minimizes  SE  is  0(4)  symmetric,  i.e.  tP  is  
a  function  of the  four-dimensional  radial  variable  p  alone,  where  

p2;:  t~ +x2•  (2.172)  

Then  

SE  ;:z,,' f  dpp'  [H:Y  +V(~)] (2.173)  

and  the  equation  of motion  is  (exercise  4)  

d2tP  +  ~ dtP  =  V'(tP).  (2.174) 
dp2  p  dp  

In  terms  of  this  variable,  the  boundary  conditions  for  a  bounce  solution  are  
tP  -+  tP+  as  p  -+  00,  and  dtP  dp  =  0  when  p  =  0,  where  tP+  is  the  value  of  
tP  at  the  metastable minimum.  

An  explicit  bounce  solution  is  most  easily  obtained  in  the  so-called  'thin­
wall'  approximation  [19]  which  treats  the  energy  difference  E  between  the  two  
vacua  as  small  compared  with  the  height  of  the  potential  barrier  between  them.  
Then,  we  write  

V(tP)  = Vo(tP)  +  O(E)  (2.175)  

where  Vo(tP)  is  the  effective  potential  in  the  limit  that  we  neglect  the  energy  
difference  between  the  two  vacua,  and  

E  =  V(tP+>  - V(tP-)  (2.176)  

where  tP+  and  tP- are,  respectively,  the  values  of tP  at  the  metastable  and  absolute  
minima.  The  Euclidean  equation  of  motion  is  approximated  first  by  replacing  
V'(tP)  by  V~(tP) in  (2.174).  We  shall  see  later  that,  in  this  approximation,  it  is  also  

correct  to  neglect  ~~. in  which  case  the  equation  of  motion  to  be  solved  for  the  
bounce  solution  becomes  

d2tP  ,  
-2  =  Vo(tP).  (2.177) 
dp  

It  is  not  difficult  to  show  that  the  solution  is  

dtP f  (2.178) p  =  J2Vo(tP)'  

A  simple  example  is  obtained  by  taking  

).,  (  2)2 
Vo(tP)  =  8  tP2  - ~ (2.179)  
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which  has  degenerate  minima  at  ~ =  ±JJ./ v'A  with  Vo  =  O.  Then  (2.178)  leads  
(exercise  5)  to  

tP  - 4>0  =  :r tanh  [ I (p  - PO)]  (2.180)  

where  4>0  is  the  value  of  tP  at  some  reference  value  po  of  p.  Choosing  po  to  be  
the  value  at  which  ~ takes  the  average  of  its  values  in  the  true  and  false  vacua,  
namely  4>0  = 0,  then  

tP  =  ~ tanh  [!!:.(P  - PO)].  (2.181) 
v'f.  2  

Assuming  that  PO  »  J1.  -I,  the  length  scale  on  which  tP  varies,  then  

J1.  as  p  -+  0  (2.182) tP  -+  - v'A  

and,  in  any  case,  
JJ.  as  p  -+  00.  (2.183) tP  -+  .fi  

It  will  be  seen  later  that  this  is  correct  for  the  bounce  solution  that  minimizes  
SE.  If (after  lifting  the  degeneracy  of  the  two  vacua  using  the  O(f)  term  in  V)  
~ =  tP- =  -J1./v'A  is  the  true  vacuum  and  tP  =  tP+  =  JJ./.fi  is  the  false  vacuum,  
then  the  bounce  solution  describes  a  bubble  of true  vacuum  embedded  in  the  false  
vacuum  with  wall  thickness  of  order  J1.  -I,  where  the  rapid  variation  of  tP  occurs,  
separating  the  two  regions.  Under  the  assumption  that  PO  »  J1.- I ,  the  radius  of  
the  bubble  is  large  compared  with  the  thickness  of  the  wall,  which  explains  the  
'thin-wall'  approximation  terminology.  

The  next  steps  are  to  calculate  B  and  to  justify  the  various  assumptions  made.  
In  the  thin-wall  approximation.  

~(p) =  - ~ for  p  «po  (2.184) 
v'f.  

_  J1.  [J1. - v'A  tanh  i(p  - PO)]  for  p  ~ PO  (2.185)  

_  J1.  
for  p»  po.  (2.186) -..If.  

The  contribution  to  SE  from  outside  the  wall  (p  »  po)  is  zero  because  here  
!(dtP/dp)2  +  V(~) ~ O.  The  contribution  from  inside  the  wall  (p  «  po)  is  
obtained  by  first  noting  that  here  

1 (d~)22"  dp  +  V(tP)  ~ -£.  (2.187)  

As  a  consequence,  the  contribution  to  SE  from  inside  the  wall  is  

1l'2  
SE  ~ -T£pg.  (2.188)  
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The  remaining  contribution  to  SE  comes  from  the  region  within  the  wall.  Noting  
that  (2.178)  implies  that  

dcp -dp  =./2VO  (2.189)  

this  contribution  to  SE  may  be  written  as  

SE  ~ 21r2~ /  dp 2Vo(cp)  =  21r2~L:+  dCPJ2Vo(t!».  (2.190)  

Thus,  the  total  value  of  SE  in  the  thin-wall  approximation  is  

1r'2  
SE  =  -T~~ + 21r'2p51  (2.191)  

where  

·+ 1  ==  dCPJ2VO(CP).  (2.192) 1.­
Minimizing  SE  with  respect  to  Po,  to  find  the  bounce  solution  that  dominates  the  
tunnelling,  gives  

31  
Po  ~ -.  (2.193)  

~ 

Thus,  when  ~ is  small,  Po  is  large  compared  with  J.L  -I,  which  justifies  an  earlier  
assumption.  It  also  follows  that  the  small  energy  difference  between  the  two  
phases  does  indeed  correspond  to  a  bubble  of  true  vacuum  with  a  thin  wall.  
Moreover,  the  neglect  of  ~~ is  also  justified  because  outside  or  inside  the  

bubble  ~ is  negligible  because  cP  is  slowly  varying,  and  within  the  bubble  wall  

~ ~ ~ ~ ~ is  negligible  because  Po  is  large.  With  Po  given  by  (2.193),  the  
minimum  value  of  SE  deriving  from  (2.191)  is  

2711'2/4  
SE  =  lE3  (2.194)  

which  provides  the  value  of  B  for  the  bounce  solution  that  dominates  the  
tunnelling  rate  (2.167).  With  CP±  =  ±p,/.Jr,  and  Vo  given  by  (2.179),  it  is  
straightforward  to  evaluate  1  to  obtain  

2p,3 
1=-.  (2.195) 

3A.  

Then  the  tunnelling  rate  is  given  by  (2.167)  with  

81r'2 P,  12  
B  =  3  4  .  (2.196)  

~ l;  

Once  the  bubble  of  the  true  vacuum  has  materialized,  it  can  be  shown  [22]  that  
(in  the  thin-wall  approximation)  it  materialises  with  radius  p  =  Po  and  that  the  
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development  in  time  of the   bubble  can  be  obtained  by  continuing  in  time  from  
Euclidean  time  to  real  time.  Thus,  whereas  in  Euclidean  time  the  surface  of the   
bubble  was  at  

p  = 	 Jtl  + x 2  =  PO  (2.197)  

in  real  time  the  surface of  the   bubble  is  at  

v'x2  - c2t2  = PO  	 (2.198)  

(restoring  the  explicit  speed  of light   c  which  we  have  been  setting  to  I).  The  
quantity  PO  is,  in  general,  on  a  sub-microscopic scale   and  so  negligible.  Thus,  to  
a  good  approximation,  the  surface  of the   bubble  is  at  x 2  =  c2t2•  Consequently,  
the  radius of  the  bubble  grows  with  the  speed of  light.  

2.10  Exercises  

I. 	 Recast  the  effective potential   of (2.62)   in  the  form  (2.77).  
2. 	 Show  that  the  zero-temperature  effective  potential  deriving  from  (2.94)  

always  has  a  minimum  at  lPc  = 0   when  B  >  0  and  et  >  O.  Also,  show  
that when   B  <  0  there can   only  be a   minimum at   the  origin  when  et  <  O.  

3. 	 Check  that  the  SU(5)  symmetric,  SU(4)  x  U(I)  symmetric  and  SU(3)  x  
SU(2)  x  U(I)  symmetric  minima  of (2.123),   (2.124)  and  (2.125)  all  have  
V  =0.  

4.  Derive the Euclidean action (2.173) and the equation of  motion (2.174) when  
lP  is  a  function  of the   four-dimensional  radial  variable  p  alone.  

5.  Check  that  the  bounce  solution  satisfies  (2.178)  and  that,  for  Vo  given  by  
(2.179), this   leads  to  the  explicit solution   (2.180).  

2.11  General references   

The  books  and  review  articles  that  we  have  found  most  useful  in  preparing  this  
chapter are:   

• 	 Kolb  E  Wand  Turner  M  S  1990  The  Early  Universe  (Reading,  MA:  
Addison-Wesley)  

• 	 Olive  K A  1990 Phys.   Rep.  190  307  
• 	 Linde  A D  1979 Rep.   Prog.  Phys.  42 389   
• 	 Bailin D  and  Love  A   1993  Introduction to  Gauge  Field  Theory  (Bristol:   lOP)  
• 	 Bailin  D  and  Love  A  1994  Super symmetric Gauge   Field  Theory  and String   

Theory  (Bristol:  lOP)  
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Chapter 3 

Topological defects 

3.1 Introduction 

When a phase transition occurs in the early universe, the alignment of the 
spontaneous symmetry breaking expectation value may be different in adjacent 
causal domains. In that case, topologically stable objects such as domain walls, 
cosmic strings and magnetic monopoles, referred to as 'topological defects', 
can be formed [I J. Similar topological defects are familiar in condensed state 
physics. For example, a ferromagnet is, in general, divided into domains 
where the spontaneous magnetization is aligned in a definite direction. At the 
boundary between two such domains, the direction of the magnetization evolves 
continuously between its direction in one domain and its direction in the adjacent 
domain to form a so-called 'domain wall'. Another example of a topological 
defect is provided by a magnetic flux line in a type II superconductor. In this case, 
the phase of a complex scalar field (associated with the Cooper-paired electron 
condensate) changes by 211'n, where n is an integer, in going around a closed 
loop surrounding the flux line and the flux line carries n units of a quantum 
of magnetic flux. In addition to these two-dimensional and one-dimensional 
topological defects, there are also point defects. These are most familiar in 
a particle physics context as magnetic monopole solutions though analogous 
objects occur in superftuid 3He. In the context of particle physics and early 
cosmology, the corresponding topological defects are associated with the vacuum 
expectation values (VEVs) in electroweak or grand unified theories or with the 
various moduli that occur in superstring theories. 

Once such topological defects have been formed at a phase transition in 
the early universe, they can manifest themselves in various ways. The simplest 
manifestations are as a potentially substantial contribution to the energy density 
of the universe or, in the case of magnetic monopoles, as a relic density of 
particles carrying magnetic charge. More subtle manifestations are also possible. 
For example, relic cosmic strings may act as gravitational lenses or produce 
temperature fluctuations in the cosmic microwave background radiation. 
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Figure  3.1.  Effective  potential  for~4 theory.  

In  the  following  sections,  we  shall  develop  the  theory  of  domain  walls,  
cosmic  strings  and  magnetic  monopoles  in  turn.  

3.2  Domain  walls  

When  the  effective  potential  in  a  field  theory  has  two  degenerate  minima  with  
V  =  0,  two-dimensional  solutions  of  the  field  equations  with  finite  energy  per  
unit area can occur.  The simplest examples  of such domain· wall solutions  [2] are  
obtained  from  the  Lagrangian  density  

{,  =  !a"tI>8"tI>  - V(tI» 	 (3.1)  

with  

V(tI»  = 	 ~(tI>2 _  ,,2)2  (3.2) 
4  

where  tI>  is  a  real  scalar  field  and  A and  '7  are  real  constants.  The  potential  V  has  
minima  with  V  =  0  at  tI>  =  ±"  and  a  maximum  at  tI>  =  0  (see  figure  3.1).  The  
idea  is  to  construct  a  static  solution  for  which  tI>  evolves  from  one  minimum  for  
z  -+  -00  to  the  other  minimum  for  z  -+  +00.  In  that  case,  the  domain  wall  is  in  
the  x-y  plane.  Clearly,  we  can  construct  such  solutions  with  the  domain  wall  in  
any  chosen  plane.  

In  general,  for  a  static  solution  where  tI>  depends only  on  z,  the  field  equation  
is  

d2t1>  = V'(tI». 	 (3.3) 
dz2  
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As  for  the  (approximate)  bounce  in  (2.177),  the  solution  satisfies  

~ (dq,)2  =  V  +c  (3.4) 
2  dz  

where  c  is  a  constant.  The  energy  (per  unit  area)  of the  domain  wall  is  given  by  

(3.5) E=  L:[H:Y +V(~)] d,  

and  so  to  obtain  a  solution  with  finite  energy  density,  it  is  necessary  to  require  that  
dq,/dz  .....  0  as  z  .....  ±oo.  (V(q,)  will  already  approach  zero  as  z  .....  ±oo  if  we  
succeed  in  constructing  a  solution  of  the  type  we  are  looking  for.)  Thus,  we  must  
take  c  =  O.  Then  integrating  (3.4)  gives  

z=±f~ (3.6) 
..tIV  

(analogously  to  (2.177».  For  the  choice  (3.2),  this  gives  

z  - zo  =  =f  ,J2  aretanh  (tl)  (3.7)  

"..fi.  "  
where  zo  is  an  integration  constant.  Different  choices  of  this  constant  amount  to  
moving  the  centre  of  the  domain  wall  along  the  z-axis.  Inverting  (3.7)  gives  

rfJ  =  th  ==  :fTl  tanh  [ "..fi. ..ti  (z  - zo) ]  .  (3.8)  

As  z  .....  00,  ~ .....  :PI  and,  as  z  .....  -00,  ~ .....  ±".  The  two  solutions  q,  = q,+  
and  q,  =  q,_  are  referred  to,  respectively,  as  the  'kink'  and  the  'antikink'.  The  
kink  evolves  from  the  minimum  at  q,  =  -Tt  for  z  .....  -00  to  the  minimum  at  
q,  =  +"  for  z  .....  +00  (see  figure  3.2)  and  the  antikink  evolves  conversely  (see  
figure  3.3).  Both  domain  walls  have  their  centre  at  Z  = zo  in  the  sense  that  rfJ  = 0  
when  z  =  zoo  The  'thickness'  of each  domain  wall  is  of order  J(2/"A),,-I.  This  
is  a  balance  between  the  desire  of  the  potential  energy  to  make  the  wall  as  thin  
as  possible  and  the  desire  of  the  gradient  energy  to  make  the  wall  as  thick  as  
possible.  The  total  energy  per  unit  cross-sectional  area  of  a  kink  or  antikink  is  
finite  because  in  (3.5)  V(rfJ)  and  dq,/dz  go  to  zero  sufficiently  fast  as  z  .....  ±oo.  
Substituting  the  explicit  solutions  (3.8)  into  (3.5)  gives  the  finite  energy  per  unit  
area  of a  kink  or  anti kink  (exercise  I):  

E  =  j  02)"A,,3 .  (3.9)  

The  stability  of a  domain  wall  is  associated  with  a  topological  principle.  The  
Lagrangian  (3.1)  possesses  a  discrete  Z2  symmetry  

Z2  :  q,  .....  -q,  (3.10)  
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Figure 3.2.   Kink  soli ton  solution .  
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Figure 3.3.   Antikink  soliton  solution.  

which is broken by the  vacuum expectation value  of t/).  The domain walls connect  
the  two  distinct  minima  which  constitute  the  complete  space  of minima.  There  is  
no  way  to  continuously  defonn  a  domain  wall  to  a  new  object  that  does  not  have  
its  ends  at  distinct  minima.  while  keeping  the  energy  density  finite.  

The  fonnation  of  such  topological  defects  can  be  understood  in  tenns  of  
the  Kibble  mechanism  [I],  which  we  now  describe.  As  discussed  in  chapter  2,  
symmetries  are  expected  to  be  restored  at  high  temperatures.  As  the  universe  
cools,  it  passes  through  a  phase  transition  and  different  regions  of  the  universe  
undergo  phase  transitions  to  different  minima  of  the  zero-temperature  effective  
potential.  There  will  be  some  correlation  length  ~ such  that  the  VEVs  for  points  
of  space  separated  by  more  than  about  ~ are  uncorrelated.  The  length  ~ cannot  
be  larger  than  the  particle  horizon  since  no  influence  can  have  propagated  over  a  
distance  greater than  this  from  the  big  bang  to  the  time  of the  phase  transition.  
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In  the  present  case,  at  high  temperatures  we  expect  (t/»  to  be  zero  and,  
after  the  phase  transition,  some  regions  will  have  (t/»  =  11  and  some  will  have  
{t/>}  = -".  In  this  way  topological  defects  can  form.  Although  a  domain  wall  can  
change  its  shape,  topology  prevents  it  from  disappearing  once  formed  because  its  
ends  are  at  discrete  minima  of V.  In  general,  there  will  be  curved  domain  walls  as  
well as  flat  domain walls,  with  the curved walls enclosing a region  of space  inside  
which  the  VEV  of t/>  differs  from  the  VEV  of t/>  outside.  

Many  domain  walls  will  form  constituting  a  random  network  whose  
evolution  with  time  may  be  studied.  The  result  for  non-relativistic  domain  walls  
is  that  the  energy  density  (i.e.  the  energy  per  unit  volume)  of  the  domain  walls  
scales  as  R- 1,  where  R(t)  is  the  scale  factor  of  the  universe.  This  should  be  
compared  with  the  energy  density  due  to  radiation  which  scales  as  R-4  and  
that  due  to  matter  which  scales  as  R-3  (as  in  section  1.3).  Consequently,  as  R  
increases  with  time.  the  energy  density  of  the  universe  comes  to  be  dominated  
by  domain  walls.  The  total  energy  associated  with  a  plane  domain  wall  with  area  
H02,  where  Ho  is  the  present  day  Hubble  constant,  is  far  larger  than  the  estimated  
total  energy  due  to  matter  within  the  Hubble  radius.  For  example,  for  J..  not  too  
much  different  from  I  and"  '"  lOO  GeV,  the  former  is  larger  by  12  orders  of  
magnitude.  A  larger  expectation  value  for  the  scalar  field  makes  things  worse  
(exercise  2).  Thus,  domain  walls  appear  undesirable.  This  suggests  that  a  theory  
is  needed  which  does  not  have  disconnected  vacuum  states,  such  as  (t/»  =  ±"  in  
the present model, to  avoid the existence  of domain walls.  Alternatively, a period  
of inflation  (see  chapter  7)  is  needed  to  dilute  the  domain  wall  density.  

3.3  Global  cosmic  strings  

One-dimensional  topological  defects  (cosmic  strings)  can  also  be  produced  by  
phase  transitions  in  the  early  universe.  The  simplest  example  of  a  cosmic  string  
[3]  may  be  derived  from  the  Lagrangian  density  for  a  complex  scalar  field  t/>:  

£.  =  a",t/J*a"'t/J  - V(t/J)  (3.11  )  

with  

V(t/J)  =  ~(tP·t/J - rh2  (3.12) 
2  

and  J..  and  "  are  real  constants.  This  Lagrangian  possesses  a  global  U (I)  
symmetry  under  

t/J  ~ eiat/J  (3.13)  

where  a  is  an  arbitrary  constant  real  number.  The  potential  V  of  (3.12)  has  a  
maximum  at  t/J  =  0  and  minima  with  V  =  0  when  

(3.14) t/J  =  "ei/3  

where  f3  is  an  arbitrary  real  number.  The  vacuum  VEV  (3.14)  breaks  the  global  
U (1)  symmetry  because  it  is  not  invariant  under  the  transformation  (3.13).  
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It  is  possible  to  construct  other  extended  static  solutions  as  follows.  Take  
cylindrical  polar  coordinates  (p,  0,  z).  The  solutions  in  question  have  the  form  

f/)  =  1jeUt8  f(p)  (3.15)  

for  some  integer  n  and  the  function  I  (P)  is  to  be  determined  from  the  field  
equations.  In  cylindrical  polar  coordinates.  these  are  (exercise  3)  

d2 I  I  dl  n2  
(3.16) ~2 +  ~ d~ - ~2 I  = 1(/2  - 1)  

where  
~ ==  l,1/2'1P.  (3.17)  

The  phase  of t/J  will  become  undefined  at  p  =  0  unless  It/JI  ~ 0  as  p  ~ O.  Thus,  
the  boundary  condition  

I(p)  ~ 0  asp~ 0  (3.18)  

is  required  to  ensure  a  single-valued  field  t/J.  Also,  there  is  the  boundary  condition  

I(p)  ~ 1  asp  ~ 00  (3.19)  

so  that  t/J  approaches one  of its continuum  of minima (3.14) in  order to minimize  
the  energy.  Equation  (3.16)  may  be  solved  numerically  with  these  boundary  
conditions.  The  scale  of  the  distance  is  set  by  l, 1/2'1  so  the  vortex  line  or  cosmic  
string  has a  core  of radius of order l. -1/2'1-1 outside of which  t/J  approaches  its  
minima  as  p  ~ 00  and  inside  of which  t/J  ~ 0  as  p  ~ O.  

The  energy  E  of the  vortex line  or cosmic string is given  by  

E  = f d3x  [Vt/J*  .  Vt/J  +  V(t/J)].  (3.20)  

Taking  cylindrical  polar  coordinates,  the  energy  per  unit  length  (along  the  z­
direction)  of a  cosmic  string  of length  I  is  

E  LOO  LlK  (at/J*  at/J  1  at/J*  at/J) -=  pdp  dO  --+--- (3.21) 
I  0  0  ap  ap  p2  ao  ao  

because  (3.14)  is  independent  of  z.  The  last  term  in  (3.21)  gives  a  contribution  
to  Ell  proportional  to  1000  12p-1  dp  and,  because  I  ~ I  as  p  ~ 00,  this  
contribution  is  logarithmically  divergent.  Considering  the  energy  inside  a  cylinder  
of radius  R  and recalling that l, -1/2'1-1 sets the length scale, we  must get  

E  ....,  In(l.1/2'1R).  (3.22) 
I  

This  global  cosmic  string  resembles  the  vortex  line  in  superftuid  4He  where  t/J  is  
the  condensate  wavefunction.  
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Like  a  domain  wall,  a  (global)  cosmic  string  is  stabilized  by  topological  
considerations.  A  cosmic  string  with  asymptotic  behaviour  ein9  as  p  _  00  is  
said  to  have  winding  number  n.  The  space  of  vacuum  states  (minima  of  V)  is  
characterized  by  eifJ  (as  in  (3.14»  and  so  is  just  a  circle  SI.  If  (for  fixed  z)  we  
draw  a circular path  of large  radius  in  real  space encircling the  core  of the  cosmic  
string  (where  tP  =  0),  then,  as  we  go  once  around  this  path  in  real  space,  the  field  
tP  goes  n  times  around  the  circle  S I  which  is  the  space  of vacuum  states.  Provided  
that  the  cosmic  string  is  either  of  infinite  length  or  forms  a  closed  loop.  this  is  a  
property  of a  cosmic  string  that  cannot be  changed  by  continuous deformations.  It  
is  a  topological  quantum  number  which,  at  least  at  the  classical  level,  guarantees  
the  continued  existence  of  a  vortex  line  once  formed,  unless  it  encounters  other  
vortex  lines  or  divides  into  more  vortex  lines  in  such  a  way  that  n  is  conserved  
(e.g.  into  n  vortex  lines  with  unit  winding  number.)  

If  we  denote  the  space  of  true  vacua  (minima  of  V)  by  M.  then  the  
topological  entity  involved  is  the  homotopy  group  Jrl  (M).  In  the  present  case,  
the  relevant  homotopy  group  is  Jrl  (SI)  which  is  known  to  be  Z,  i.e.  isomorphic  
to  the  integers.  The  winding  number  n  E  Z  expresses  this  fact.  

3.4  Local  cosmic  strings  

If a  complex  scalar  field  is  coupled  to  a  gauge  field,  e.g.  the  electromagnetic  field,  
then  the  Lagrangian  possesses  a  local  symmetry,  rather  than  a  global  symmetry  
as  in  section  3.3,  and  a  so-called  'local  cosmic  string'  [41  or  gauge  string  can  
occur  as  a  solution  of  the  field  equations.  The  simplest  example  is  provided  by  
the  Higgs  model,  which  is  the  theory  of  a  complex  scalar  field  coupled  to  a  U  (I)  
gauge  field  which  we  may  take  to  be  the  electromagnetic  field.  The  Lagrangian  is  
that  of section  3.3  amended  to  incorporate  the  gauge  coupling.  Thus,  

C  =  (D",tP)*(D"'tP)  - !F",uF"'U  - V(tP)  (3.23)  

with  V  (tP)  given  by  (3.12)  and  

D",tP  ==  (a",  +  ieA",)tP  (3.24)  

F",v  =  a",A v  - avA",  (3.25)  

where  A",  is  the  electromagnetic  four-potential  and  e  is  the  charge  of  the  scalar  
field.  This  is  the  same  model  as  that  studied  in  section  2.4.  after  adding  a  constant  
to  V  and  with  a  different  definition  of A.  

As  in  the  discussion  of global  cosmic  strings,  V  has  a  minimum  at  tP  =  F1eifJ •  
However.  the  Lagrangian  now  possesses  a  local  U  (  I)  symmetry  under  

tP  _  eiA(x)tP  (3.26)  

1  
A",  - A",  - -a",A(x) (3.27) 

e  
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which  is  broken  by the   VEV  of~. Using  cylindrical polar  coordinates,   we  look  
for solutions  for  ~  of the  form  (3.15), as   before, but  we  must  now   also  determine  
AI"  For large   p, with   the  boundary condition   (3.19) so  that  ~  approaches one  of   
its  minima,  

~ .....  TleintJ  as  p  ~ 00.  (3.28)  

If we  also arrange  that   AI' has  the  boundary  condition   

A" .....   -ie- I 01'   In(~/TI) asp ~ 00  (3.29)  

then  D,,~ and  F",IJ  both approach  zero  for  large  values  of  p and  the  energy  density   
vanishes  for  large  p.  Indeed,  when  the  complete  solution  with  these  boundary  
conditions  is  constructed  numerically,  in  a  way  that  we  shall  discuss  shortly,  the  
energy density  approaches  zero  fast  enough  as   p  ~ 00 that  this  cosmic  string  has   
finite  energy density   per unit  length.   

The  local  cosmic  string  or gauge  string   carries  magnetic  flux.  The  amount  
of flux   may  be determined   by  integrating over  the   area  of a  circle  of large  radius   
R  in  the  (p, 0)  plane   with  the  asymptotic form   (3.29).  Then (exercise  5)   

f B . dS   =  fA.  dl  = 211'ne- l •  (3.30)  

Thus,  the  local  cosmic  string  characterized  by  winding  number n   carries n   units  
of magnetic   flux  ae- I .  Local  cosmic  strings  are,  therefore,  quantized  tubes  of  
magnetic  flux  analogous to   flux  lines  in  a  superconductor.  

To  construct the   required (static)  solution  for  ~ and AI"   we  take  

~ = Tle ill9 f(p)   (3.31)  

as  for  the  global cosmic  string.   Then, since   

O~ I -p+--6+-1c  o~ ~ O~A 
V~= (3.32)  

(Jp  p  iJe  iJz  

the  boundary condition  (3.29)   suggests that   we  should take   A" to   have  non-zero  

components  only  in  the  p and   iJ  directions.  Working  in  a  gauge  in  which  the  
component Ap   =  0,  we  take  

=  n  ~ 

A  -a(p)6. (3.33) 
ep  

The functions  a  (p)  and  f  (p)  are  then  determined  numerically  by  solving  the  field   
equations  

DI'D"~+ l.(~.~ - Tl2)~ =  0  (3.34)  

oIJF"IJ  + ie(~·D"~  - ~(D"~)·) = 0  (3.35)  

subject to   the  boundary conditions  (3.28)  and   (3.29).  
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There  are  now  two  length  scales  in  the  problem  instead  of one  as  in  the  case  
of  the  global  string.  There  is  the  mass  m41  of  the  scalar  field  after  spontaneous  
spontaneous  symmetry  breaking  which  is  obtained  by  substituting  (t/J)  in  V  (t/J).  
This  gives  

m~ =  ,,2)..  (3.36)  

It  is  m41  that  controls  the  rate  of  variation  of  t/J  for  large  P  and.  therefore.  the  
variation  of !(p).  There  is  also  the  mass  mA  of the  gauge  field  after  spontaneous  
symmetry  breaking  which  is  obtained  by  substituting  (t/J)  in  the  (D",t/J)*(D"'t/J)  
term.  This  gives  

m~ = e2,,2.  (3.37)  

It  is  m A  that  controls  the  rate  of  variation  of  A  for  large  p  and.  therefore.  the  
variation  of a(p).  The  approximate  solution  is  found  to  be  of the  form  

!.....,  I  -l1r1/2exp (- ':::)  as  ~ -+  00  (3.38)  

a'"  I - al~1/2exp(_~) as  ~ -+  00  (3.39)  

where  11  and  al  are  constants  and  

(3.40) ~ ==  mAP·  

It  can  be  seen  from  (3.38)  and  (3.39)  that  t/J  is  localized  on  a  scale  m; 1  and  A  

is  localized  on  a  scale  m AI.  As  a  consequence.  the  energy  density  is  localized  
without  introducing  a  cut-off.  

The  energy  per  unit  length  of  a  local  cosmic  string  may  be  estimated  as  
follows.  The  cosmic  string  has  an  inner  core  where  t/J  is  approximately  zero  (i.e.  
a  core  of false  vacuum)  with  radius  

-I  .-1/2-1 R  (3.41) 41  ~ m41  = A  "  

and  a  tube  of magnetic  flux  of radius  

R  .....,  m-I  - e-1n-1  (3.42) A - A  - .,.  

The  energy  density  obtained  by  putting  t/J  = 0  in  V  (t/J)  is  !).,,4.  Thus.  there  is  an  
energy  density  per  unit  length  from  the  inner  core  of  the  cosmic  string  of  order 
! ).,,47r  R~ '" ,,2.  There is also an energy per unit length from the tube  of magnetic  

flux  of order 8 2 R~ where 8  is the magnitude  of the magnetic field strength. From  
(3.30).  with  one  unit  of flux.  we  estimate  

8 .....,  R-2  -I 
A  e  .  (3.43)  

Thus.  using  (3.42).  we  find  that  8 2 R~ .....,  ,,2  and  both  the  magnetic  and  inner-core  
contributions  to  the  energy  per  unit  length  JL  are  of  the  same  order.  The  total  has  
order  of magnitude  

JL  .....,  ,,2.  (3.44)  
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3.5  Gravitational fields   of local   cosmic  strings  

To  calculate  the  gravitational  field  due  to  a  cosmic  string,  the  energy-momentum  
tensor produced by the  string is required.  (See  section 5 of the review  by  Vilenkin  
in  the  general  references  at  the  end  of  this  chapter.)  For  cosmological  purposes,  
we  are  interested  in  cosmic  strings  of  length  much  greater  than  the  radius  of  the  
inner  core  or  the  flux  tube.  We  therefore  average  the  energy-momentum  tensor  
over  the  core  of the  cosmic  string  and  treat  the  string  as  having  zero  radius.  Thus,  
for  a  long  straight  line  with  axis  along  the  z-direction,  we  replace  the  energy­
momentum  tensor  T",IJ  by  T"'IJ  where  

T"'IJ  = c5(x)8(y)  fcore  T",IJ  dx  dy.  (3.45)  

Invariance  under  Lorentz  boosts  along  the  z-direction  shows  that  Too  =  T33  and  
there  are  no  off-diagonal  components.  The  conservation  law  for  the  energy­
momentum  tensor  

DIJT",IJ  = 0  (3.46)  

must  also  be  imposed;  D IJ  is  the  gravitational  covariant  derivative.  Then,  by  
considering  f  Dj T;j  xk  dx  d y  and  integrating  by  parts,  we  conclude  that  

tk  =0  fori,k  =  1,2.  (3.47)  

Also,  since  the  total  energy  per  unit  length  is  JL,  we  can  now  write  

T"'IJ  =  JLdiag(l,O,O,I)cHx)8(y)  (3.48)  

so  that  f  Too  dx  dy  =  JL.  
With  the  energy-momentum  tensor  (3.48)  for  the  local  cosmic  string,  

Einstein's  field  equations  can  be  solved  in  the  limit  GNJL  «  I  for  the  metric  
in  the  region  outside  an  infinitely  long  straight  string  [6].  In  cylindrical  polar  
coordinates  (p,  (J,  z),  the  result  for  the  proper-time  element  d'l'  is  

dT2  = dt2  - dz2  - dp2  - (I  - 4GNJL)2p2  d(J2.  (3.49)  

This  can  be  recast  as  the  metric  of  flat  Minkowski  space  by  the  transformation  

e = (I  - 4GNJL)(}.  (3.50)  

However,  for  0  ~ (}  <  211',  we  have  

o ~ e <  211'(1  - 4GNJL)  (3.51  )  

which  limits  the  range  of  e.  This  is  called  a  'conical  singularity'.  Space  with  a  
conical  singUlarity  is  the  same  as  flat  space  0  ~ {)  <  211'  with  the  angular  region  
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"tII''''  

Figure  3.4.  Conical  singularity  on  the  space  outside  a  local  cosmic  string.  0  is  the  axis  of  
the  string.  

between  2:n-(l-4GNIL)  and  2:n- removed.  In  addition,  because  0  =  0  and  0  =  2:n­
are  to  be  identified,  we  must  identify  fJ  =  0  and  fJ  = 2:n- - 60  where  

60;;;:  8:n-GNIL.  (3.52)  

Then,  looking  along  the  z-axis,  space  looks  as  in  figure  3.4  with  the  hatched  area  
removed  and  points  at  the  same  value  of  p  on  the  dotted  lines  identified.  The  
conical  singularity  in  the  space  outside  a  long  straight  local  cosmic  string  has  
several  striking  consequences:  

3.5.1  Double  images [5]   

A  galaxy  located  behind  a  local  cosmic  string,  from  the  perspective  of  the  
observer,  will  acquire  a  double  image.  Consider,  for  simplicity,  an  infinitely  
long  straight  cosmic  string  nonnal  to  the  plane  of  the  page  in  figure  3.5  with  
the  observer  cv  and  the galaxy  g  being  observed  in  the  plane  of the  page.  Because  
points  A  and  B  are  identified,  as  discussed  earlier,  two  images  of  the  galaxy  are  
seen,  emanating  from  A  and  B.  The  angle  between  the  two  images  6a  is  given  
by  

d16a  =  d260  (3.53)  

where  dl  and  d2  are,  respectively,  the  distances  from  the  observer  to  the  galaxy  
and  from  the  cosmic  string  to  the  galaxy.  As  a  consequence  of  (3.52),  

d2  
6a  =  d)  8:n-GNIL·  (3.54)  
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0)  

Figure  3.5.  Double  image  of  a  galaxy  behind  a  cosmic  string.  0  is  the  axis  of  the  string,  
CJ)  is  the  observer  and  g  is  the  galaxy.  

3.5.2  Temperature discontinuities   [6J  

Consider  a  local  cosmic  string  moving  perpendicularly  to  the  line  of  sight  of  an  
observer  observing  the  cosmic  microwave  background  radiation  coming  from  far  
off  (dl  :::  d2  in  the  previous  discussion).  There  are  two  images  PI  and  P2  of  
the  same  point  separated  (see  figure  3.6)  by  an  angle  6.a  :::  8rrGNIl.  If  the  
relative  velocity  of  the  cosmic  string  and  observer  is  v,  then  PI  and  P2  have  a  
component  of  velocity  of  order  6.a  antiparallel  or  parallel  to  v  respectively.  As  a  
consequence,  there  is  a  Doppler  shift  in  the  temperature  of  the  radiation  between  
the  two  points.  This  results  in  a  discontinuity  f,  T /  T  from  one  side  of  the  cosmic  
string to the  other  of order 8rr G N III 17  I.  

3.5.3  Cosmic  string wakes   [7J  

A  long  straight  cosmic  string  moving  with  velocity  v  across  the  universe  will  
deflect  particles  of  matter.  A  wedge  of  matter  with  opening  angle  8rr  G N Il  and  
radius  vt  forms  as  a  wake  in  time  t.  This  may  be  relevant  to  structure  formation.  

3.6  Dynamics of  local   cosmic strings   

Once  a  network  of cosmic  strings  has  formed,  following  a  phase  transition  in  the  
early  universe,  its  evolution  depends  on  the  emission  of gravitational  radiation  by  
string  loops.  In  principle,  the  classical  field  equations  (3.34)  and  (3.35)  provide  
the  equations  of  motion  for  a  local  cosmic  string.  In  practice,  when  we  are  
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•  c.o  

Figure  3.6.  Temperature  discontinuity  due  to  a  cosmic  string.  0  is  the  axis  of  the  string,  
w  is  the  observer  and  PI  and  P2  are  two  images  of  the  same  point.  

't  

Figure  3.7.  World  sheet  for  a  cosmic  string.  

neglecting  the  radius  of the  string  core,  it  is  much  simpler  to  use  the  equations  of  
motion  for  a  relativistic  string  of  zero  radius  which  derive  from  the  Nambu-Goto  
action  and  are  identical  to  the  equations  of  motion  for  the  fundamental  bosonic  
string.  

We  denote  by  XII- the  position  in  spacetime  of  points  on  the  axis  of  the  
cosmic  string  (where  the  Higgs  field  cP  is  zero.)  Whereas  a  point  particle  may  be  
described  by  degrees  of  freedom  XII-(T)  depending  only  on  a  timelike  coordinate  
r,  to  describe  a  string  we  need,  in  addition,  a  spacelike  coordinate  a  which  we  
may  take,  for  convenience,  to  be  in  the  range  0  ~ a  ~ 7r.  Then,  the  string  degrees  
offreedom  XII-(T,  a)  trace  out  a  curve  (see  figure  3.7)  as  a  varies  at  fixed  T.  The  
action  S  for  a  relativistic  string  propagating  in  Minkowski  spacetime  is  of  the  
form  

S  =  -2" T  1rl  dT  la1f  da  (-deth)I/2hafll1l1-vaaXII-aflxv  (3.55)  
r/  0  

where  T  is  the  string  tension,  

1111-v  = diag(l,  -I,  ... ,  -I)  (3.56)  
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and  hap(r, a)   is  a  world-sheet  metric  of signature   (+.  -) where   a  =  0  and  
1  refer  to  r  and  a  respectively.  This  action  displays  two-dimensional  world­
sheet reparametrization  invariance  and  also  possesses  conformal  invariance  under   
a  local  rescaling of  the  world-sheet metric   

~hafJ =  A(r, a)hafJ   ~xp. =  O.  (3.57)  

With  the  aid  of world-sheet   reparametrization  invariance,  the  world-sheet  metric  
may  be reduced   to  the  form  

hafJ(r, a)  =   e"('f,C1)TJafJ  (3.58)  

where  
TJafJ  =  diag(l. -1).   (3.59)  

With  the  aid  of conformal invariance.  it  may   be  further reduced  to   

hafJ  =  TJafJ·  (3.60)  

The gauges  (3.60)  are  referred  to  as   'covariant' gauges.   There is  still   further gauge   
freedom  which  we  shall  exploit shortly.   

In  a  covariant  gauge.  the  equations  of motion   of  the  string.  obtained  by  
varying  with  respect to   Xp.  and  hafJ  (exercise 6).   take  the  simple form   

aaaaxp.  = (  - a2   - - a2 )   Xp.  = at"2  0  (3.61) 
aa2  

with  the  constraints  

axp.  axp'  + axp.   axp'  = 0  
ar  at"  (3.62) 

80'  aa  

axp.  axp'  = o.  
ar  (3.63) 

aa  

For a   closed string   loop.  there  is  the  boundary condition   

XP.(r, 0'+  1l')   = Xp.(r,  a).   (3.64)  

The  remaining  gauge  degrees  of freedom   may  be  used  to  choose  the  'temporal'  
gauge in   which r   is  identified with   XO  ==  t  (Minkowski time.)   Then, the  equations   
of motion  and  constraints become   

(~-~)x=o (3.65) 
at2  aa2  

ax  . ax   =0  (3.66) 
at  aa  

(aa~Y + (~:Y  =  (3.67) 1.  
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Figure  3.8.  Intercommuting  cosmic  strings.  

Figure  3.9.  Cosmic  string  loop  intercommuting  with  itself.  

These  equations  have  oscillatory  solutions  and  these  will  allow  string  loops  to  
radiate.  Because  the  string  loops  are  relativistic,  the  quadrupole  formula  for  
gravitational  radiation  cannot  be  used.  A  relativistic  calculation  shows  that  the  
power  P  emitted  in  gravitational  radiation  by  a  string  loop  is  given  by  

P  = yGNIL 2  (3.68)  

where  G N  is  Newton's  constant  and  y  is  a  number  of  order  100  which  depends  
on  the  particular  loop  [8].  As  in  section  3.5,  IL  is  the  energy  per  unit  length  of  the  
cosmic  string.  

This  gravitational  radiation  is  important  for  the  development  in  time  of  the  
network  of  cosmic  strings  that  formed  at  a  phase  transition.  Also  important  is  
the  process  of  intercommuting  [1,9]  as  in  figure  3.8.  In  particular,  a  string  loop  
may  intercommute  with  itself  as  in  figure  3.9  to  produce  two  smaller  loops.  When  
the  evolution  of  a  string  network  is  studied  [10],  allowing  for  these  two  effects.  
it  is  found  that  strings  will  not  dominate  the  present  day  energy  density  of  the  
universe.  However.  apart  from  individual  relic  strings  producing  the  observable  
effects  discussed  earlier.  the  evolution  of  the  string  network  will  leave  a  relic  
gravitational  wave  background  as  a  result  of  gravitational  radiation  emission  by  
oscillating  string  loops.  Since  the  gravitational  emission  is  controlled  by  G N  IL 2•  

this  will  set  a  limit  on  IL  if  this  gravitational  background  is  not  to  undo  the  
predictions  of  the  standard  model  for  nucleosynthesis.  This  is  found  to  require  
[Il]  G N  IL  ~ 10-5.  There  is.  however.  a  tighter  bound  [12]  set  by  the  magnitude  
of  the  cosmic  microwave  background  fluctuation  of  G  N  IL  ~ 10-6.  It  is  possible  
that  particle  production  rather  than  gravitational  wave  emission  dominates  the  
energy  loss  from  oscillating  cosmic  string  loops.  In  that  case  [13],  there  is  an  
even  tighter  bound  G N  IL  ~ 10-9.  
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3.7  Magnetic  monopoles  

It  is  also  possible  for  point  topological  defects,  magnetic  monopoles  [14 J,  to  form  
at  phase  transitions  in  the  early  universe.  The  simplest  model  exhibiting  this  is  
an  SO(3)  gauge  field  theory  with  SO(3)  spontaneously  broken  to  U(l)  by  the  
expectation  value  of  a  scalar  field  •  in  the  three-dimensional  representation  of  
SO(3).  The  Lagrangian  density  for  this  model  is  

I  "A  2 2  
C,  =  DI-'.·  DI-'.  - 4~"F: - 8(.·. -"  )  (3.69)  

where  the  gauge  field  strength  is  

F:"  =  al-'A~ - a"A~ - gE"bcAtA~. (3.70)  

The covariant derivative  of the scalar field  is  

DI-'fi>Q  = al-'fi>"  - 8EabcAtfi>c  (3.71)  

and  a,  h,  c  take  the  values  1,2,3.  Minimization  of the  effective  potential  

A 
V  =  _( •.• _  ,,2)2  (3.72) 

8  

fixes  
(3.73) ,.,  =". 
 

However,  because  of the  SO(3)  symmetry,  the  direction  of.  is  not  fixed.  
The  magnetic  monopole  solution  [16]  is  a  spheric ally  symmetric  solution  for  

•  of the  form  
• =  ,,/(r);  (3.74)  

which  is  a  mapping  from  ordinary  space  to  the  SO(3)  space,  with  the  asymptotic  
behaviour  ......  ,,;  (3.75) asr-+oo  

The  spatial  variation  of.  will  be  determined  by  the  covariant  derivative  DI-'f  
and  so  g"  must  enter  the  r-dependence.  On  dimensional  grounds,  we  can  write,  
without  loss  of generality,  

...  =  H(~) 

."  
A  (3.76) -", ~ 

where  

~ ==  KT/r.  (3.77)  

The  required  behaviour  as  r  -+  00  is  obtained  if  

H(~) -+  I  as  ~ -+  00.  (3.78)  
~ 
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In  the  absence  of  gauge  fields,  the  contribution  of  the  scalar  kinetic  term  to  the  
energy  is  given  by  

E  =!  f  a;#/t·  a;#/td3x  (3.79)  

where  i  =  I,  2,  3  is  a  (summed)  spatial  index.  In  spherical  polar  coordinates  
(r,  8,  tP),  

v  _  atPa  r  ~ atPa  j  _I _  atPa  ~ (3.80) tPa  - ar  +  r  ae  +  r  sin  e  atP  tit·  
Since  r  is  a  function  of e  and  tP,  but  not  of r,  the  large  r  behaviour of the  integral  
(3.79)  for  the  energy  of the  monopole is  controlled by  

f  [( ar)2  I  (ar)2]  (3.81  )  E  ....  dr  ae  +  sin2  e  atP  .  

Thus,  in  the absence  of a gauge field  contribution to  E,  the  energy  of the  monopole  
solution  would  be  infinite.  

To  find  a  finite-energy  solution,  we  need  the  gauge  field  contribution  to  the  
covariant  derivative  to  produce  a  cancellation  to  'improve'  the  behaviour  of  VtPa  
for  large  r.  This  possibility  may  be  studied  by  making  the  following  ansatz  for  
the  gauge  field  expectation  value:  

A':I  =  Eail2 
rl  (K(~) - I).  (3.82)  

I  gr  

Then  (exercise  7)  

K(~)H(~) 2  ,  rar; 
D;tPa  =  r4  (r  &a;  - rar;)  +  (~H (~) - H(~»4. (3.83) 

g  gr  

A dangerous term  of the  type  H(~)r2t5a;/gr4 has  cancelled  between  the  a;tPa  and  
-gEabcA~tPc contributions  to  D;tPa.  For  ~H(~) -+  1  as  ~ -+  00,  this  term  would  

have  had  the  unwelcome  asymptotic  behaviour  r-1  as  r  -+  00.  The  surviving  
terms  are  of  order  r-2  as  r  -+  00,  provided  K  (~)H (n  and  ~H' (~) - H  (~) are  
finite  for  ~ -+  00,  and  a  divergent  contribution  to  the  energy  of  the  monopole  is  
avoided.  

With  the  ansatz  (3.82)  for  the  expectation  value  of  the  gauge  field,  the  field  
strength  is  given  by  

K2  - 1  (K'  K2  - 1 )  gFjj  =  --2-~iaj +  "2 - --4- (E;aprprj  - Ejaprpr;).  (3.84) 
r  r r  

The  energy  of the  magnetic  monopole  solution  may  now  be  written  in  terms  of  H  
and  K  as  

47f'71000  I 
 
g  0  2 
 

E  = - d~ ~-2 [  -(~H' - H)2  +  H2K2  +  (~K')2 (3.85)  

+ ~(K2 - 1)2  +  ~(H2 - rh2].  (3.86) 
2  Sg  
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Minimizing  with  respect  to  variation  of  Hand  K  gives  (exercise  8)  

eK"  = KH2  +  K(K2 -I)  (3.87)  

~2H/I =  2K2H  +  -;'H(H2  _  ~2). (3.88) 
2g  

There  is  an  analytic  solution  [15]  in  the  limit  AI g2  ~ 0,  

H(~) = ~ coth~ - I  (3.89)  

K(~) = ~cosech~. (3.90)  

Note  that  K(~)H(~) and  ~ H'(~) - H(~) are  finite  as  ~ ~ 00,  as  required  earlier  
to avoid a divergent contribution to  the energy  of the monopole solution.  In fact,  

K(~)H(~) ~ 0  as~~oo (3.91)  

in  this  limit.  The  corresponding  energy,  which  is  (at  least  at  the  classical  level)  
the  mass  mM  of the  monopole,  is  given  by  

4n'11  
mM=--· (3.92) 

g  

More  generally,  it  has  the  form  

4n'11  (A)  (3.93) mM=---gh  g2  

where h   turns out  to   be a   slowly  varying function.   
The monopole  solution  carries  a   magnetic charge,   which  we  now  evaluate in   

the  limit  )..lg2  ~ O.  The  solution (3.90)  implies  that   

K(~) ~ 0  as~ ~ 00.  (3.94)  

Thus,  as  ~ - 00, (3.82)  reduces  to   

A~ 1----_  EaU'1 
as~ ~ 00.  (3.95) 

gr2  

We  shall  referto  

Br  = (V  x  AD);  = ~E;JI: Fjl;  (3.96)  

as  the  'magnetic'  field,  though  we  are  not dealing   with  electroweak  theory  here  
because  the  gauge  group  is  SO(3)  rather  than  SU(2)  x  U.(I).  With  the  gauge  
field  expectation value  given  by  (3.95),  the   magnetic field   is (exercise  9)   

B~ _  
1  -~~ 

,d'a 
(3.97) gr2 '  
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The  surviving  U  (1)  gauge  group  after  spontaneous  symmetry  breaking  by  the  
scalar  field  expectation  value  (3.74)  is  the  group  of  rotations  about  the  direction  
i.  The  magnetic  field  should.  therefore.  be  identified  with  the  component  B  of  
Ba  in  this  direction:  

B=~ (3.98) 
gr2  

Thus,  the  magnetic  field  is  the  field  of a  magnetic  monopole  with  magnetic  charge  
47r/g.  

3.8  Monopole  topological  quantum  number  

The  asymptotic  form  t/J  =  "i  of  the  magnetic  monopole  cannot  be  deformed  
continuously  to  the  trivial  configuration  t/J  =  "i  and,  for  this  reason,  the  magnetic  
monopole  is  topologically  conserved  once  formed.  This  is  reflected  in  the  
existence  of  a  topological  quantum  number  defined  as  follows.  The  sphere  M  
of  all  solutions  for  the  expectation  value  of  t/J  which  minimizes  the  tree-level  
effective  potential  is  given  by  

It/JI  =  '1.  (3.99)  

This  defines  the  surface  of a  sphere  and  t/J(r)  can be thought  of as  a mapping from  
the  surface  E  of  a  sphere  in  coordinate  space  to  the  surface  M  of  the  sphere  in  
the  space  of  solutions.  If  we  parametrize  the  surface  E  by  parameters  u  and  v,  
then  the  element  of surface  on  the  space  M  is  

dS  =dSn  =  ( -ot/J  x  -ot/J)  dudv.  (3.100) ou  OV  

The  unit  normal  n  to  the  sphere  is  i  and  so  

( ot/J  ot/J) t/J.  - x - du dv =  "dS.  (3.101) ou  ov  

As  the  parameters  u  and  v  are  varied  to  allow  i  to  sweep  out  the  surface  E  of  a  
sphere  in  coordinate  space,  t/J  sweeps  out  the  surface  M  of  a  sphere  in  the  space  
of solutions.  For  the  single monopole  solution  that  we  are  discussing.  as  the  first  
sphere  is  swept  out  once  so  is  the  second  sphere.  More  generally,  for  a  multi­
monopole  solution,  it  is  possible  for  the  second  sphere  to  be  swept  out  N  times,  
where  N  is  an  integer,  as  the  first  sphere  is  swept  out  once.  Thus,  

~ t/J.  ( -ot/J  x  -ot/J)  du  dv  = 47r,,3  N.  (3.102)  
1:  OU  OV  

If we  continuously  deform  t/J,  N  cannot  change  because  it  is  an  integer,  one  in  the  
case  of  the  single-monopole  solution.  It  is  a  topological  quantum  number,  which  
reflects  the  fact  that  a  magnetic  monopole  configuration  once  formed  cannot  be  
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continuously  defonned  to  the  trivial  configuration.  Thus,  magnetic  monopole  
configurations  are  stabilized  in  a  topological  way.  

The  topological  quantum  number  N  is  related  to  the  magnetic  charge.  This  
can  be  demonstrated  as  follows.  Denote  the  elements  of  surface  and  the  unit  
nonnal  on  the  sphere  in  coordinate  space  by  dS  and  ii.  Then  

-_  (a,  a,) 
dS n  = - x - du  dv  (3.103) 
au  av  

from  which  it  follows  that  

a('Jt  rk)  du  dv.  
€;jk  dS a(lI, v)   

Noting  that  a.  x  a.  = ~  (a_  x  a_)  a(rj"k)  (3.105) 
au  av  2  a'j  a'k  a(u, v)   

and  using  (3.103),  the  topological  quantum  number N   may  be  recast  in  tenns of   
coordinate-space derivatives  of  _  as  

3  =  I  ~ _  (  41rrl  N  -2  €jjknj.  .  -a a.  x  - a. )  ­dS.  (3.106)  
E  'l  ark  

The integral  (3.106)  may   be fonnulated  as   a surface  integral  of.·  F  jk on  a  sphere   
1;  of large   radius,  where  the  Fjk  are  the  spatial  components  of the   gauge  field  
strength defined   in  (3.70).  For this   purpose,  we  need  a  solution  for  F jk  in  tenns  
of _   valid  for  large,.  As  discussed  in  section  3.7,  for  a  finite-energy  solution  
there  is  a  cancellation between  the   two tenns  in   the  covariant derivative   

Dj. =  aj. - g(A;  x  _)  (3.107)  

such that the covariant derivative is  of order ,-2 for,  -+ 00,  whereas, separately,  
the  two  tenns are   of order' -I. Thus,  for  large  r,   

aj.  ~ g(Aj  x  _)  (3.108)  

from  which  it follows   that  

1  
Aj  =  -2 (. x   a;.)  + 1  

laj.  (3.109)  
g"  "  

where  
aj  =.·Aj.  (3.110)  

The corresponding  expression  

-2.· 
for   _ 

 
.   F lA:  obtained from   (3.70) is   

1 
•. FjA:   = 

 
(aj. x   at.) +  (ajak   - akaj).  (3.111) 

g"  

nj  =  (3.104)  
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Combining  (3.106)  with  (3.111),  the  topological  quantum  number  N  may  be  
written  in  terms  of the field   strength as   

3  g'1  ­
4H'1  N  =  T 21 1:  fijkni.· Fjk  dS.  (3.112)  

Finally.  N  may  be  recast  as  a  surface  integral  of the   magnetic  field  on  a  sphere  
1:  of large   radius.  As  discussed  in  section  3.7,  the  magnetic  field  in  the  model  
with  SO(3)  gauge  group  should  be  identified  with  the  component  Br  in  (3.96)  
along the   direction  about which   the  surviving  U (I) gauge  symmetry  is   the  group  
of rotations.  In general. this is the direction  1.1-1 ••  Consequently, the magnetic  
field  B  is given  by   

I  
Bi  = -€ijk  •  .  F jk.  (3.113)  

2'1  

It follows   from  (3.112) that   

N  =  - g  1 B  ·iidS. 
4H  1:  

 - (3.114)  

Thus,  the  topological quantum  number  N   measures  the  magnetic charge   in  units  
of 4H/g.  

3.9  Magnetic  mono poles  in  grand unified   theories  

In  general,  if  we  start  with  a  grand  unified  group  G  and  the  symmetry  is  
spontaneously broken   to  H  (at a   phase transition),  then   the  action of  any element   
of  H  leaves  a  vacuum  state  invariant.  Consequently.  distinct  vacuum  states  
correspond to   the  coset manifold  G  /  H. The  logic  behind  this  is   that G   invariance  
of  the  effective  potential  means  that  starting  from  any  vacuum  state.  we  can  
generate  further vacuum   states  (degenerate  in  energy)  by  acting  with  elements  
of G.  However.  when  the  element of  G   in  question is   an  element of  the  subgroup  
H,  it  does  not  produce  a  new  vacuum  state.  The  topological  entity  underlying  
the  existence  of stable   magnetic  monopoles  is  the  second  homotopy  group  for  
G /  H  denoted by  H2  (G /  H), whose  elements  are  inequivalent  mappings   from  the  
surface  of a  two-sphere  S2  to  G /  H, i.e.   mappings which  cannot  be   continuously  
deformed into each other.  There is a theorem that H2  (G /  H) can  be   identified with   
HI (H)/H)(G).  Here, HI  (G)  is  the  first  homotopy group of  G  whose elements are  
inequivalent mappings  from   a  circle  S I   to G   and  similarly for   H.  

In  the  example  just  considered.  G  =  SO(3)  and  H  =  
(1» 

V(I).  Also  
1rt (U   =  Z,  the  integers,  with  the value   of the   integer  being  the  winding  
number, i.e.  the  number of  times we wind around the circle defined by U  (I) as  we   
wind  once  around  the  circle  in  coordinate space.   Less  obviously,  HI (SO(3»  =  
Z2,  the  integers  modulo 2.   In  this  case,  therefore. H2(G/  H) =   Z/Z2 or  the   even  
integers.  This  is  why  we  found  magnetic  charges  in  multiples  of 4H / g   which  is  
twice  the  Dirac  magnetic  monopole charge.   
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When  H  is  SU(3)  x  SU(2)  x  U(l).  which  will  be  the  case  for  a  phase  
transition  in  which  the  grand  unified  theory  breaks  spontaneously  to  the  standard  
model.  then  1rt(H)  is  just  :ll'1(U(1»  =  Z.  because  :11'1  (SU(3»  and  :II'}(SU(2»  
are  both  trivial.  Thus.  for  such  a  spontaneous  symmetry  breaking.  the  resulting  
second  homotopy  group  is  Z/:II'I  (G).  In  particular.  if  :11'1  (G)  is  trivial.  as  is  the  
case  for  the  SUeS)  grand  unified  group  discussed  in  section  2.6.  then  :ll'2(G/ H)  =  
Z  and  we  have  magnetic  monopole  solutions.  

We  now  ask  what  masses  are  possessed  by  the  magnetic  monopoles  in  grand  
unified  theories.  By  analogy  with  (3.92).  the  magnetic  monopole  mass  will  be  of  
order 4:11''1/ ga.  where" is  the expectation value  of the  Higgs scalar responsible for  
breaking  the  grand  unified  symmetry  and  ga  is  the  value  of  the  gauge  coupling  
constant  for  the  grand  unified  group  at  the  unification  scale.  In  the  case  of  the  
SUeS)  grand  unified  theory  of  section  2.6.  ".  which  is  identified  with  "'c.  is  of  
order  1015  GeV  and  ga  is  of  order  1.  Thus.  we  expect  the  magnetic  monopole  
mass  mM  to  be  of order 1016 GeV.  In the case  of the supersymmetric  SUeS)  grand  
unified  theory  of  section  2.7.  with  a  unification  scale  of  2  x  1016  GeV.  which  is  
1.5  orders  of magnitude greater than  in  the non-supersymmetric case.  a  magnetic  
monopole mass  of order  1011_1018  GeV  is  to be expected.  

3.10  Abundance of  magnetic  monopoles   

Magnetic  monopoles  form  as  the  phase  transition  from  the  SUeS)  symmetric  
phase  to  the  standard  model  SU(3)  x  SU(2)  x  U(l)  phase  occurs.  This  is  
the  result  of  the  expectation  values  of  the  Higgs  field  only  being  correlated  over  
some  finite  distance.  The  expectation  values  of the  Higgs  field  at  different  points  
in  space  will  not  be  aligned  to  produce  a  uniform  Higgs  field  over  distances  
greater  than  this.  Thus,  we  can  expect  topologically  non-trivial  configurations  
to  be  produced.  in  particular.  magnetic  monopoles.  The  number  of  magnetic  
monopoles  formed  [16.  17]  should  be  determined  as  to  order  of  magnitude  by  
the  distance  over  which  the  Higgs  expectation  values  are  correlated  [1,9].  

There  are  two  effects  which  can  limit  the  range  over  which  this  correlation  
occurs.  The  first  is  the  statistical-mechanical  thermal  average  over  the  product  
of  the  two  Higgs  fields.  For  a  second-order  phase  transition.  this  correlation  
length  is  of  order  Tc- I  but  can  be  larger  for  a  first-order  phase  transition,  which  
proceeds  through  the  formation  of  bubbles  of  the  low-temperature  phase  which  
then  coalesce.  The  second  effect  is  the  general-relativistic  particle  horizon  dH.  
Correlations  cannot  occur  over  distances  greater  than  the  distance  dH  that  light  
has  been  able  to  travel  since  the  big  bang.  For  a  Friedman-Robertson-Walker  
(FRW)  universe.  as  discussed  in  section  1.2,  the  proper  distance  at  time  t  from  
any  point  to  the  particle  horizon  is  

I  dt'  
dH(t)  =  R(t)  10  R(t')'  (3.115)  
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Barring  cosmological  inflation  (to  be  discussed  in  later  chapters).  the  growth  of  
R(t)  with  time  is  according  to  the  power  law  

R(I)  ,..,.  tn  (3.116)  

(with  n  = ! for  a  radiation-dominated  universe).  Then  

t  
dH(t)  =-- (3.117) 

I-n  

provided  n  :f:.  O.  Thus.  dH(t)  is  of  order  t.  We  require  the  particle  horizon  at  
time  te  that  the  phase  transition  is  completed.  A  slightly  different  discussion  is  
required  for  second-order  (or  weakly  first-order)  and  first-order  phase  transitions.  

For  a  second-order  phase  transition.  the  phase  transition  is  completed  at  the  
critical  temperature  Tc.  For  the  radiation-dominated  era  of  the  FRW  universe.  
there  is  the  connection  (see  section  1.3)  between  the  time  I  since  the  big  bang  and  
temperature  T:  

t  ~ 0.3N;I/2 mP  (3.118) 
T2  

where  mp  is  the  Planck  mass  (_1019  GeV)  and  N.  is  the  effective  number  of  
degrees  of  freedom  at  temperature  T:  

N.  =  NB  +  jNF.  (3.119)  

NB  and  N F  are,  respectively,  the  numbers  of  bosonic  and  fermionic  degrees  of  
freedom  for  particles  with  mass  small  compared  to  T.  in  the  sense  described  after  
(2.19).  For  approximately  one  monopole  per  horizon  volume,  the  number  density  
nM  of  monopoles  should  be  

nM(T,.)  - (dH(te»-3  - 1;3""  N;/2Te6mi,3(0.6)-3  (3.120)  

where  we  have  taken  
dH(IC>  =  2te  (3.121  )  

for  the  radiation-dominated  era.  If  we  compare  this  with  the  entropy  density  of  
(2.21),  

2 
_  27r  N.T3  (3.122) s  - 45  

then  
nM(Te )  "'- 10  6N 1/ 2T3  -3 

•  •  emp.  (3.123) 
seTt")  

At  temperatures  below  Tt"  but  above  the  electroweak  phase  transition.  the  
appropriate  value  of  N.  is  that  for  the  SU(3)  x  SU(2)  x  U(I)  standard  model:  

N.  =  106.75.  (3.124)  
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Thus,  

nM(T(")  '" 102   (~)3 (3.125) 
s(T(")  mp  

Assuming  that  the  expansion  of  the  universe  for  T  <  Te  is  adiabatic,  then  
S  cc  R-3  and  the  ratio  nM(T)/s(T)  does  not  change.  As  a  consequence,  the  
monopole  contribution  OMh2  to  Omh2  today  is  predicted  to  be  many  orders  
of magnitude   greater  than  the  observational  bound  of about   0.15.  For  a  non­
supersymmetric GUT theory  with  Te  of order 10 15  Ge V and  a  magnetic   monopole  
mass  mM  of order   1016  GeV,  OMh2  is  14  orders of  magnitude   greater  than  this  
upper bound.   For a   supersyrrunetric GUT  theory   with  Te  of order 10 16  GeV  and  
a  magnetic  monopole  mass  mM  of order   1017_1018  GeV,  the  situation  is  even  
worse  with  OMh2  some  18-19 orders of  magnitude greater than the upper bound  
(exercise  10).  

In  the  case  of a   first-order  phase  transition,  the  transition  does  not  proceed  
until  some  temperature below   Te  at  which  the  bubble  nucleation  rate  for  bubbles  
of the   low-temperature  phase  is  of the   same  order as   the  expansion  rate  H  for  
the  universe.  We  expect  the  Higgs  expectation  values  to  be  correlated  within  
a  bubble  but  uncorrelated  between  any  two  bubbles.  Thus,  the  number  density  
of monopoles   (or antimonopoles)   produced should   be  of the   order of  (~lrTl)-I,  
where  rb  is  the  average  radius  of a   bubble  at  a  time  when  the  bubbles  have  
expanded  to  just  fill  the  whole  of space.   The  universe  supercools  at  the  first­
order phase   transition  but  reheats  when  the  bubbles  coalesce,  so  that  the  entropy  
density  after  reheating  is  21r2N.T; /45,  as  in  the  second-order case.   Thus,  for  a  
first-order  phase  transition,  

nM  45  _I  -3  (4  (3.126) -;- '" 211'2   N.  Te  31rTb 
3)-1 

 
 

The  value  of rb   has  been  estimated  [18]  leading  to  a  value  of OMh 2 even   larger  
than  in  the  second-order phase  transition  case.   

In  either  case,  if  magnetic  monopoles  form  at  a  grand  unified  phase  
transition,  some  mechanism  is  required  to  dilute  the  monopole  density  by  many  
orders  of magnitude.   The  most  obvious  mechanism  would  be  annihilation  of  
monopoles and   antimonopoles.  However,  this  has  been  estimated  [16]  and  there  
is  no  significant  effect  for  nM/s  ;5  10-10  and,  for  larger  values  of  nM/s,  
the  annihilation  process  cannot  reduce  nM/s  much  below  10-10•  For  the  non­
supersymmetric  case,  this  mechanism  is  ineffective  and,  for  the  supersymmetric  
case,  it  can  do  no  more  than  reduce  the  monopole  abundance  closer  to  that  for  
the  non-supersymmetric  case.  A  possible  mechanism  that  can  do  the  trick  is  
cosmological inflation,  which  will  be  discussed  in  later chapters.   

After  some  mechanism  has  reduced  the  monopole  abundance  to  a  value  
compatible  with  the  bound  on  Omh2,  any  residual  monopole  density  can  have  
important astrophysical  consequences  [19].   For instance,   because the   expectation  
value  of  the  grand  unified  Higgs  field  approaches  zero  as  the  centre  of  the  
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monopole  is  approached,  the  SU(5)  grand  unified  symmetry  is  essentially  
unbroken  in  the  core  of  the  monopole.  Consequently,  when  a  nucleon  encounters  
a  magnetic  monopole,  decay  of the  nucleon  can  be  induced  by  the  baryon-number  
non-conserving  interactions  of  the  lepto-quark  fields  of  the  SU(5)  grand  unified  
theory.  In  this  way,  the  magnetic  monopoles  collected  by  stars  in  the  course  of  
time  will  cause  emission  of  radiation  from  neutron  stars.  This  puts  severe  limits  
on  the  flux  of  magnetic  monopoles.  More  details  of  this  and  other  astrophysical  
effects  may  be  found  elsewhere  [19].  

3.11  Exercises  

I.  Calculate the energy  of a kink or anti kink soliton solution.  
2.  Compare  the  total  energy  associated  with  a  plane  domain  wall  with  1/  =  

lOO  Ge V  and  area  Ho2  with  the  known  mass  of the  universe  within  a  Hubble  

volume  Ho3.  
3.  Derive  equation  (3.16)  for  the  dependence  of  a  global  cosmic  string  on  the  

cylindrical  polar  coordinate  p.  
4.  Check  that  the  Lagrangian  (3.23)  possesses  the  local  UO)  gauge  symmetry  

(3.26)  and  (3.27).  
5.  Show  that  the  magnetic  flux  carried  by  a  local  cosmic  string  is  given  by  

(3.30).  
6.  Derive  the  string  equation  of  motion  (3.61)  and  the  constraints  (3.62)  and  

(3.63)  by  varying  the  action  (3.55)  with  respect  to  X""  and  ha~. 
7.  Derive  the  covariant  derivative  (3.83)  for  a  monopole  solution.  
8.  Derive  equations  (3.87)  and  (3.88)  for  the  form  of a  monopole  solution.  
9.  Derive  equation  (3.96)  for  the  magnetic  field  due  to  a  magnetic  monopole.  
10.  Estimate  the  monopole  contribution  to  Oh2  in  non-supersymmetric  and  

supersymmetric  grand  unified  theories.  

3.12  General references   

The  books  and  review  articles  that  we  have  found  most  useful  in  preparing  this  
chapter  are:  

• 	 Hindmarsh  M  Band  Kibble  T W B  1995  Rep.  Prog.  Phys.  58477  
• 	 Vilenkin  A  1985  Phys.  Rep.  121263  
• 	 Kolb  E  Wand  Turner  M  S  1990  The  Early  Universe  (Reading,  MA:  

Addison-Wesley)  
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Chapter 4 

Baryogenesis 

4.1 Introduction 

The success of the standard model in describing the fundamental interactions has 
the consequence, among many others, of verifying the TCP invariance of nature. 
This requires that. for each particle X having mass m x, decay width r x and 
quantum numbers Q X etc, there is an antiparticle i with the same mass and 
width, mx = mx, rx = rx but with opposite quantum numbers Qx = -Qx 
etc. One might, therefore, suppose that the world we inhabit would share this 
symmetry and contain equal numbers N x of particles and antiparticles N x = N x . 
This is clearly not the case. We know that the solar system is made of matter 
(protons, neutrons, electrons) and not antimatter, and the experimental bound on 
antihelium is [1] 

at 95% CL. (4.1) 

Any region of antimatter must be well separated from regions of matter, since, 
in any region where protons and anti protons coexisted, their annihilation into 
pions with the subsequent tr° -+ 2y decays would significantly distort the 
cosmic microwave background. The data require that such domains of matter 
and antimatter are separated by a length scale 18 with, conservatively, 

18 ~ 3 kpc (4.2) 

the radius of our galaxy, and probably [2,3] 

18~lOkpc (4.3) 

the scale of the Virgo cluster. 
The asymmetry between baryons (b) and antibaryons (b) may be quantified 

by the difference in their number densities n8 == nb -nJj. However, the expansion 
of the universe dilutes both nb and nfj and, hence, their difference, since, as 

DOl: 10.1201/9780367806637-4 91 
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explained  in  section  1.4,  each  scales  as  R(t)-3,  where  R(t)  is  the  cosmological  
scale  factor.  It  is,  therefore,  customary  to  use  the  ratio  

nB  
t1=  - (4.4)  

ny  

to  measure  the  asymmetry.  ny  is  the  photon  number  density  given  by  the  
Boltzmann  distribution  (see  section  5.1)  

ny  = 2~(3)T3 (4.5)  
n-2  

when  the  temperature  is  T.  From  the  measured  microwave  background  [4],  
T  =  To  =  2.725  ±  0.002  K  at  present  and  this  gives  

ny  ~ 411  cm-3.  (4.6)  

The  present  net  baryon  number  density  may  be  written  in  terms  of  the  current  
critical  density,  defined  in  (1.37).  

3  2  n2  1  88h2  10-29  -3 PC=-2mp  0  =.  x  gcm  (4.7) 
8n­

where  h  ==  Ho/lOO  km  5-1  Mpc-I  measures  the  present  Hubble  constant,  
mp  ==  G;I/2  =  1.22  x  1019  GeV  is  the  Planck  mass  and  [5]  

h  = 0071+0.04 (4.8) ..  -0.03'  

Then  

nB  =  OB  Pc  =  1.1  x  1O-'OBh2  cm-3  (4.9)  
mB  

and  
,.,  =  2.65  x  1O-80Bh2  (4.10)  

where  0  B  ==  P B /  Pc  measures  the  baryon  energy  density  as  a  fraction  of  the  
critical  density.  The  measured  primordial  deuterium  and  hydrogen  abundances  
require  [5]  

OBh2  = 0.024  ±  0.001  (4.11  )  

which  gives  
'1  = (6.36  ±  0.26)  x  10-10•  (4.12)  

The  conservation  of entropy  in  a  comoving  volume.  when  the  universe  is  in  
local  thermal  equilibrium,  means  that  the  entropy  density  s  also  scales  as  R(t)-3.  
Thus.  the  baryon  asymmetry  may  alternatively  be  measured  by  

nB  
1/B  ==  --;- (4.13)  
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where  
27r2  

s-- 45  g.s,TT3  (4.14)  

with  

(T;)3  7  (T;)3 =  L  T  +"8  L  T  (4.15)  g.S,T  gi  gi  
bosons  ferrmons  

counting  the  total  effective  number  of  massless  degrees  of  freedom  at  the  
temperature  T,  gi  =  I  for  a  real  scalar,  gi  =  2  for  a  real  (mass less)  gauge  
field,  gi  = 4   for  a  spin-!  Dirac  field  and gi   = 2   for  a  Weyl  (chiral)  field.  We  are  
allowing 

T;  
the   possibility that  different  species   are  at different  temperatures.   When  

all  = T,   g.S,T  = N.  given   in  equation  (1.104),  and  (4.14) reduces   to  (2.21).  
This  is  an  excellent approximation   until  t  '"  1 s  (or  T  '"  1 MeV).   However,  as  
noted in   section  1.8, it  is  not  true  today.   The advantage  of  using '1  B   as a   measure of   
the  baryon asymmetry   is that   it is   conserved, as   long  as  baryon-number-violating  
interactions occur  very   slowly.  The relationship  between   s  and ny  is   

7r4  
s  =  45~(3)g.S.Tny ~ 1.8g.s,Tny  (4.16) 

so  
'1  = 1.8g.S,T'1B.   (4.17)  

Thus,  '1  is  not  constant  in  time,  since  g.S,T  changes  as  the  temperature  drops  
and  the  number  of effective   massless  modes  decreases.  The  present  entropy  
so  = 7 .0394ny ,0 and   the  same  data (4.12)  give   

'18  =  (9.03  ± 0.37)   x  10-11 .  (4.18)  

So  the  challenge  confronting  theorists  is  to  explain  this  small,  non-zero  
number.  The  natural assumption   is  that  'originally' there   was  zero asymmetry.   In  
equilibrium  at  a  temperature  T  ~ 1 GeV,   the  nucleon  and  antinucleon  densities  
are  

nN  = nN =  2  (mNT)3/2  27r  e-mN / T •  (4.19)  

As  the  universe cools,  the   nucleons  and  antinucleons annihilate  with   a  rate  

r ann  =  RN (aannV)   (4.20)  

where  ( ... )  denotes  thermal  averaging, aann   is  the  annihilation  cross  section  and  
v  is  the  relative  velocity.  The  annihilation  continues  so  long  as  the  rate  is  larger  
than  the expansion  rate   H  of the   universe:  

1/2  
H  = (  87r~) = 27r  (7rg.,T )1/2   T2  (4.21) 

3mp  3  5  mp  
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assuming  that  the  energy  density  p  =  (1r 2 /30)g.,TT4  is  dominated  by  relativistic  
particles.  Here  

(Ti)4  7  (Ti)4 
g.,T  =  L  gi  T  + 8"  ~ gi  T  (4.22)  

bosons  ferrruons  

satisfies  g  •• T  =  g",S.T  =  N.  (with  N.  defined  in  (1.104»  when  all  particle  species  
i  are  at  the  same  temperature  Ti  =  T.  (See  section  5.1.)  The  thermal  average  

(Uann V)  '"  m-2  (4.23) - 1r  

and,  at  T  =  Tf  ~ 20  MeV,  the  annihilation  rate  falls  below  the  expansion  rate,  
nucleons  and  antinucleons  are  so  dilute  that  they  cannot  annihilate  further  and  
their  number  densities  become  frozen  at  

2 nN  =  nW  =  ~2 (  mN  )3/2  e-mN / T1  (4.24)  
ny  ny  {(3)  21fTf  

~ 10-18  (4.25)  

using  (4.6).  This  is  far  smaller  than  the  value  (4.12)  which  derives  from  the  
measured  primordial  abundances  of  the  light  nuclei.  Thus,  the  assumed  zero  
initial  asymmetry  is  inconsistent  with  the  nucleosynthesis  data.  

Of course,  statistical  fluctuations  can  generate  a  non-zero  initial  asymmetry.  
At  present  our  galaxy  contains  about  1079  photons  and  1069  nucleons.  When  
T  ;::  I  GeV,  however,  the  comoving  volume  containing  our  galaxy  contained  
about  1079  baryons  and  antibaryons.  Thus.  statistical  fluctuations  might  generate  
an  asymmetry  

NB  - NJj  '"  .IN  (4.26)  

so  that,  instead  of  (4.19),  we  have  

1  
nN  - nW  '"  -nN  '"  1O-39.5n  (4.27) .IN  N  

which  again  is  far  too  small  to  explain  the  nucleosynthesis  data.  
The  conclusion  is  that  the  initial  baryon  asymmetry  must  be  non-zero  to  

explain  the  size  of the  asymmetry  we  observe  today.  Of course,  the  required  value  
may  be  input  by  hand  as  an  initial  condition  but  aesthetically  this  is  unattractive.  
The  consensus  is  that  the  asymmetry  derives  from  new  physics  in  the  early  
universe.  We  turn  next  to  the  three  necessary  conditions  for  baryogenesis,  first  
derived  by  Sakharov  [6].  

4.2  Conditions for   baryogenesis  

If  we  start  from  a  universe  with  a  net  baryon  number  B  of  zero  and  evolve  to  
one  with  a  non-zero  value,  it  is  clear  that  baryon  number  is  not  conserved.  Thus  
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the  first  condition  is  that  there  are  baryon-number  non-conserving  interactions  
in  nature.  Aside  from  the  baryon-number  asymmetry  itself,  there  is  no  direct  
experimental  evidence  of  such  interactions  and  any  theory  which  contains  them  
is  constrained  by  the  current  lower  bound  on  the  lifetime  ('Cp )  of  the  proton  [7]  

'Cp  ~ 1031 _1033  yr.  (4.28)  

The  generation  of  a  non-zero  baryon  number  for  the  universe,  or  
'baryogenesis'.  also  requires  that  there  are  C- and  CP-violating  interactions  in  
nature.  To  see  this,  suppose  that  a  process  i  _  f.  with  initial  state  i  and  final  state  
f.  violates  baryon-number  conservation,  so  Bi  - B f  #- O.  If charge  conjugation  
C  were  an  exact  symmetry.  then  the  process  I-i. where  I is  obtained  from  i  by  
replacing  all  particles  by  their  antiparticles  and  similarly  for  i.  would  occur  at  the  
same  rate  as  the  fonner.  Since  Bi  = - Bi  and  B i  = - B f'  the  net baryon  number  
produced  by  the  two  processes  Bi  - B f  +  Bi  +  B i  is  zero.  A  similar  argument  
applies  if  CP-invariance  were  exact;  parity  reversal  P  reverses  the  momenta  of  all  
participating  particles  but  when  these  are  integrated  over  the  (identical)  allowed  
phase  space  the  net  baryon  number  produced  by  the  two  processes  is  again  zero.  
The TCP-invariance  of any particle physics model (T is  time reversal) ensures that  
if  there  is  CP-violation,  then  there  is  also  T-violation  and  it  is  easy  to  see  that  if  
T-invariance  were  an  exact  symmetry.  then  baryon  number  would  be  conserved.  
Of course.  we  have  long  known  that  C-invariance  is  violated  by  weak  interactions  
and  that  CP-violation  occurs  at  the  milliweak  level  in  kaon  decays  [8].  There  is  
also  limited  evidence  for  T-violation  in  kaon  decays  [9].  Thus  there  is  no  a  priori  
need  for  new  physics  from  this  condition.  

The  final  condition  is  that  the  baryon-number  non-conserving  processes  
occur  when  the  universe  is  not  in  thermal  equilibrium.  To  see  this,  consider  a  
particle  X  with  non-zero  baryon  number  in  thennal  equilibrium  at  a  temperature  
T  «mx.  The  number  density  nx  of  X  particles  is  given  by  

nx ~  gx(mxT)3/2e(-m x+Jl.xlT  (4.29)  

where JLX   is  the  chemical potential.   Likewise,  in  thermal equilibrium  the   number  
density n  i  of the   antiparticles  X is   

ni ~  gx(mxT)3/2e(-mx+Jl.x lT •  (4.30)  

If X.   X participate   in  baryon-number non-conserving   processes,  as  required  by  
the  first  condition,  then  the  process  

XX-XX  (4.31 )   

is  allowed  and,  in  equilibrium, this   requires  

2JLX  =  2JLi'  (4.32)  
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Then  the  asymmetry  vanishes,  since  

11  ex  RX  - Ri  =  O.  (4.33)  

Only  a  departure  from  thermal  equilibrium  will  permit  an  asymmetry.  Such  
a  departure  can  arise,  for  example,  during  a  phase  transition  in  which  gauge  
symmetry  breaking  occurs.  It  can  also  arise  due  to  the  expansion  of  the  universe  
during  the  decay  of a  heavy  particle.  

4.3  Out-oC-equilibrium  decay of  heavy  particles   

Given  enough  time  any  particle,  no  matter  how  weakly  it  interacts,  will  reach  
thermal  equilibrium.  However,  in  an  expanding  universe,  it  becomes  increasingly  
difficult  for  any  given  species  X  of  particle  to  remain  in  thermal  eqUilibrium.  
This  is  because  the  expansion  dilutes  the  densities  of  all  particles  with  which  
X  interacts  and  thereby  inhibits  the  rate  of  the  interactions  needed  to  maintain  
equilibrium; and also because the rate  of decay rx of the X particles eventually  
falls  below  the  expansion  rate  H  of  the  universe  and  the  decays  are  unable  to  
reduce  the  numbers  of  X  particles  to  the  levels  required  to  stay  in  equilibrium.  

Suppose  X  is  a  superheavy  boson,  having  non-zero  baryon  number,  which  
decays  to  lighter  fermions  f  in  a  baryon-number  non-conserving  process.  Gauge  
vector  bosons  and  Higgs  scalar  particles  with  these  properties  arise  naturally  
in  grand  unified  theories  (GUTs)  which  unify  the  strong  and  electroweak  
interactions  [lO,II].  At  high  temperatures  T  »  mx,  we  assume  that  all  particles  
are  in  equilibrium,  and  that  the  net  baryon  number  B  is  zero.  The  number  
densities  of the  X  particles  and  their  antiparticles  are  

~(3) 3  
RX  = Ri  = -2-gxT (4.34)  

1r  

with  gx  =  2,  I  corresponding  respectively  to  X  being  a  vector,  scalar  particle.  
Thus,  using  (4.5),  

RX  _  Ri  1  
(4.35) 

Ry  - Ry =  i gx .  

To  maintain  equilibrium  densities  as  the  universe  expands,  the  X  and  i  particles  
must  reduce  their  numbers  sufficiently  and,  so  long  as  they  are  able  to  do  so,  the  
net  baryon  number  remains  zero.  For  T  ;S  m x,  the  equilibrium  densities  will  then  
reduce  relative  to  that  of the  photons.  From  the  analogue  for  X  particles  of (4.19)  
and (4.5),  the  relative  densities  are  given  by  

eq  eq  2  
RX  =  ni  =  gX1r  (mx  )3/2  e-mxIT .  (4.36) 
ny  ny  2~(3) 21rT  

For  baryogenesis,  the  most  important  quantity  in  determining  whether  thermal  
equilibrium  can  be  maintained  when  T  '"  mx  is  the  decay  rate  rx  of  the  
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X  particle,  which  controls  the  numbers  of X   and  X  particles.  Unless  this  is  
sufficiently  rapid,  thermal  equilibrium densities   cannot be   maintained  as  T  falls.  
If at some  temperature  T   ~ m x  the  X  bosons cannot  decay  in   the time  scale   H- 1  

associated with   the expansion  of  the universe,  then  they  decouple  from  the  thermal   
bath  while  they  are  still  relativistic  and  their densities   satisfy  (4.35).  Thus  at  a  
lower temperature   T  ~ m x,  their abundance   is much   larger than   the equilibrium   
densities satisfying  (4.36).   The condition  for  this   to  happen is   that  

rx  ~ HIT=mx.  (4.37)  

Using (4.21),  this   requires  

1/2  
2  3  (  5  ) -1/2 

mx  ~ 21r  -;  N.  rxmp  (4.38)  

assuming  that  all  (relativistic)  particle  species  are  at  the  same  temperature.  so  
g •. T  =  N •.  The  overabundance  which  occurs  when  this  condition  is  satisfied  
allows the  possibility  ofbaryogenesis.   Whether or  not  it  is   satisfied depends  upon   
the  particular GUT  model   in  which  the  X  particles arise.   

If X  is  a  superheavy gauge  boson.  for  example,   

rx  '"  ClGmx  (4.39)  

where ClG   = g~/41r  is  the GUT   'fine  structure constant'.   Then (4.38)  gives   

> -1/2 
mx  '" N.   ClGmp.  (4.40)  

For  the  non-supersyrrunetric  SU(5)  GUT  (which.  incidentally,  does  not  satisfy  
the  constraint (4.28)  on  the   proton lifetime),   

I  15 427 
ClG  '" ;J1   mx'" 10 GeV  N·=T  (4.41)  

provided that   the  colour triplet,   electroweak  Higgs  particles  are  superheavy,  the  
constraint  (4.40)  is  not  obviously  satisfied.  However.  for  the  supersyrrunetric  
SU(5) GUT,   

I  
ClG  '" B   mx  '" 2  x  1016  GeV  915 

N·=T  (4.42)  

the  larger  values  of N.   and  mx  outweigh  the  larger  value  of ClG   and  the  non­
equilibrium condition   (4.38)  is  marginally  satisfied.  

However.  if X   is  a  superbeavy  Higgs  particle.  its  decay  width  

rx  '"  (=~Y (4.43) ClGmX  

can be much smaller than that of  the superheavy gauge boson, because the  Yukawa  
coupling is  suppressed  (unless  f   is  a top  quark)  by  a  factor  m  f  / m  w  relative  to   the  
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gauge  coupling  [10.11].  Then  the  condition  (4.38)  can  be  easily  satisfied.  since,  
in  this  case.  we  require  only  that  

mx  ~ N;I/2  (mf)2 (4.44) mW  uGmp.  

In  supergravity  GUTs.  baryon  number  non-conserving  interactions  can  also  
arise  via  hidden-sector  effects  [12].  Then  X  can  be  an  observable-sector  gauge­
singlet  scalar  which  is  coupled  only  gravitationally  to  observable-sector  fermions.  
In  this  case.  

m3  
rx--K  (4.45)  

m2 p  

and  (4.38)  gives  
1/2 mx;S  N.  mp  (4.46)  

which  is  always  satisfied.  Thus.  the  general  conclusion  is  that  the  decay  of  
superheavy  scalar  particles  in  a  supersymmetric  or  supergravity  GUT  affords  the  
best  opportunity  for  the  out-of-equilibrium  decays  necessary  for  baryogenesis.  

As  soon  as  the  age  H-1  of the  universe  becomes  equal  to  the  lifetime  rx 1  of  
the  X.  X particles  they  begin  to  decay  and  generate  a  non-zero  net  baryon  number.  
Using  (4.37),  this  occurs  at  a  temperature  Tdcc  satisfying  

HIT=Tdec  =  rx  ;S  HIT=mx'  (4.47)  

Thus.  from  (4.21),  
Tdec  <  mx·  (4.48)  

Suppose  that  the  X  particle  has  decay  channels  X  ~ In  to  a  final  state  In  
producing  baryon  number  Bn.  Then  the  X has  decay  channels  X  ~ in  producing  
baryon  number  -Bn.  and  the  net  baryon  number  produced  by  all  of these  decays  
is  

!loB  =  rx1  L  Bn[f(X  ~ In)  - r(X  ~ in)].  (4.49)  
n  

This  gives  a  net  baryon  number  density  arising  from  the  decays  of  

nB  =  nx!loB  ~ ny!loB  (4.50)  

using  (4.35).  Thus.  the  baryon  asymmetry  (4.4)  is  

"  ==  nB  '"  I  (4.51) ny  - "2 gx !loB  

or  
nB  '"  45~(3) gX  !loB.  (4.52) '1B  ==  --;- - 23r4  N.  
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As  anticipated,  llB  and,  hence,  the  baryon  asymmetry,  vanishes  if  none  of  the  X  
decays  produces a   baryon  number and   if there   is  no  C- or CP-violation.   Further,  
if thermal   equilibrium  were  maintained  any  net  baryon number  produced  by   the  
decays is   cancelled  by  inverse  decay.  

The foregoing  analysis  presumed  that  the   X  and X  decays release  no  entropy,   
which is   a  poor approximation  if  Tdec   « mx.  In   this case,   the  energy density   p  of  
the  universe is   dominated by   X  particles.  If this is converted entirely into radiation  
at  a  reheating temperature   TR  given  by  

1r2  4  3  2  2  
p::::  Px::::  nxmx  = -N  ..  TR = -8  mprx (4.53)  

30  1r  

using  (4.47),  then  

1/4  
nX  =  ~ TR  =  ~ 45m~ri
s  

(  ) (4.54)  
4mx  4  41r 3N .. m1­

and  the  baryon asymmetry  becomes   

3  TR  
1'/8  = --IlB   (4.55)  

4mx  

instead  of (4.52).   Either  way,  it  seems  that  an  encouragingly  small  amount  of  
CP-violation  is  entailed  to  generate  an  asymmetry  on  the  scale  (4.18)  observed.  
To  see  whether  it  is,  we  need  to  calculate  II B  in  the  various  models  containing  
baryon number  and  CP  non-conservation.   

4.4  Baryogenesis in   GUTs  

Grand  unified  theories  (GUTs)  seek  to  unify  the  three  separate  gauge  groups  
SU(3),  SU(2) and   U(I) of  the   standard model   in  a  simple  group  G:  

G  :::)  SU(3)  x  SU(2)  x  U(1).  (4.56)  

(See  [13]  for  a  review.)  The  GUT  hypothesis  is  that  above  some  high  energy  
(GUT)  scale  MG,  

M G", >  1015  GeV  (4.57)  

G  is  an  exact  symmetry, which   is  spontaneously  broken  at the   GUT scale   to  the  
standard  model,  which  is  itself spontaneously   broken  at  the  electroweak  scale.  In  
this  way  the  (Iow-energy)  gauge  coupling  strengths  (aI, a2,  a3)   of the   standard  
model  are  all  determined  from  the  unknown  (high-energy) coupling   strength  aG  

of G,   by using   the  renormalization group  equations  to   'run' between  the   GUT and   
the  electroweak  energy  scales.  We  have  discussed  this  in  some  detail  in  [10]  but  
the  essential  point  is  that  the  evolution  of the   coupling  strengths  depends  upon  
the matter content of  the low-energy theory.  Since neither aG   nor mG   is  known a   
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priori,  the  GUT  hypothesis  can  only  be  tested  by  starting  from  the  values  of  the  
coupling  strengths  measured  at  the  electroweak  scale  and  running  to  high  energies  
to  see  whether  they  converge  to  a  single  value  (aG).  

The known  matter content  of the  standard  model  consists  of three generations  
of  

QL  =  (3.l.~) B-1 L=O -J  
- 2 ui  =  (3.1.  -J)  B=-i  L=O  

df  =  (3.1,  i)  B=-i  L=O  (4.58)  

LL  =  (1.2.  -!)  B=O  L=I  

ei  =  (1.1.  I)  B=O  L  =-1  

using  the  notation  ("3.  "2.  Y),  where  "3  specifies  the  colour  SU(3)  
representation,  "2  the  weak  S U (2)  representation  and  Y  is  the  weak  hypercharge.  
Band  L  are  the  baryon  and  lepton  numbers  (the  superfix  C  indicates  the  charge  
conjugate  particle).  In  addition,  the  electroweak  Higgs  

hi  =  (l,l.!)  (4.59)  

is  an  essential  ingredient  of  the  standard  model,  whose  discovery  is  currently  
awaited,  hopefully  at  the  LHC.  If we  assume  just  this  matter  content,  besides  the  
12  gauge  vector  bosons  of  the  three  gauge  groups,  it  is  found  that  the  coupling  
strengths  converge  and  reach  a  point  of  closest  approach  but  not  coincidence,  at  
the  energy  scale  and  coupling  strength  given  in  (4.41).  

It  is  remarkable  that  the  couplings  come  as  close  as  they  do  and  this  in  
itself  lends  general  support  to  the  GUT  hypothesis.  However,  the  failure  to  
converge  precisely  to  a  common  value  shows  that  if  the  GUT  hypothesis  is  
correct,  then  there  must  be  matter  additional  to  that  of  the  standard  model.  
Remarkably,  the  supersymmetric  standard  model,  in  which  all  of  the  matter  
particles  (4.58)  have  supersymmetric  (bosonic)  partners  (sparticles),  all  of  the  
gauge  bosons  have  (fermionic)  supersymmetric  partners  (gauginos)  and  the  Higgs  
doublet  h I  has  a  (fermionic)  higgsino  partner,  does  produce  the  convergence  
sought  [14J.  The  calculated  unification  scale  and  coupling  constant  are  given  
in  (4.42).  (Supersymmetry  requires  an  additional  Higgs  doublet  

h2  =  (l,l,  -!)  (4.60)  

plus  its  superpartner.)  
This  convergence  represents  the  best  evidence  we  have  both  for  the  GUT  

hypothesis  and  for  low-energy  supersymmetry  and  it  is,  therefore,  natural  to  
wonder  whether  a  GUT  with  this  matter  content  produces  baryogenesis  at  the  
level  needed  to  produce  the  observed  asymmetry  (4.12)  or  (4.18).  In  a  general  
GUT,  the  matter  content  (4.58)  (and  Higgs  fields)  of  the  standard  model.  or  its  
supersymmetric  extension,  constitute  partial  or  complete  representations  R  of the  
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GUT  gauge  group  G.  The  coupling  to  the  gauge  bosons  A~ of  the  fennionic  
matter  has  the  standard  fonn  

C  =  L  Ry"'(iiJll  - gGA~tA)R (4.61)  
R  

where  t A  are  the  matrix  representations  of  G  corresponding  to  the  representation  
R  to  which  the  fennions  belong.  For  the  SU(5)  GUT,  each  generation  of  
(4.58)  belongs  to  two  irreducible  representations  5  and  10  of  the  group,  which  
decompose  into  representations  of  SU(3)c  x  SU(2)L  x  U(J)y  as  follows:  

- - 1  1 5  =  (3,  I,  j)  + (1,2,  -I)  =  [df,  Ld  (4.62)  

10  =  (3,  2,  ~) + (3,  1.  -j) + (I,  I,  I)  =  [QL,  uL'  ei.l.  (4.63)  

Evidently  the  matrix  t A  couples  the  gauge  boson  A~ to  fennions  in  

the  representations  Rand  R,  where  R  contains  the  complex  conjugate  
representations,  to  those  given  in  (4.58),  i.e.  

- - I 
QL  =  (3,2,  -6)  B=-~ L=O  

ii£.  =  (3,1,  j)  B_1 L=O -'J  
~ I dL  =  (3,1,  -'J)  B-1  L=O  (4.64) -'J  
- 1 LL  =  (1,2,  I)  B=O  L  =-1  

et  =  (1,  1,  -1)  B=O  L=l.  

For  baryogenesis,  we  are  concerned  with  those  gauge  bosons  which  are  coupled  
to  fennions  with  a  net  non-zero  baryon  number.  In  the  case  of  the  SU(5)  GUT  
with  the  gauge  bosons  in  the  adjoint  24  representation,  all  of the  12  gauge  bosons  
additional  to  the  12  of the  standard  model  have  this  property.  They  transfonn  as  

5 - 5 (3,2,  -6)  + (3,2,  6)  (4.65)  

representations  of  SU(3)  x  SU(2)  x  U(l).  We  denote  the  (colour  triplet)  SU(2)  
doublet  by  (X,  Y),  and  the  SU(3)  x  SU(2)  symmetry  requires  that  

mx=my~MG. (4.66)  

The  allowed  decay  modes  

X - dv,  ui,  dCuC  (4.67)  
Y  _  dl,  uCuc  

are  shown  in  figure  4.1.  
All  violate  baryon  number  conservation.  In  all  cases  the  difference  in  the  

baryon  number  B  and  the  lepton  number  L  of  the  final  state  is  

B  - L  =-'J 2  (4.68)  
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Figure  4.1.  Baryon-number  non-conserving  decays  of SU(5)  GUT  gauge  bosons.  
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Figure  4.2.  Gauge  vector  boson  vertices  in  the  minimal  SU(5)  GUT.  

so  we  may  consistently  assign  (X,  Y)  this  value  of B  - L,  which  shows  that  B  - L  
is conserved in all  gauge-boson-mediated processes.  B,  however,  is  not  separately  
conserved.  Indeed  couplings  (4.67)  and  their  complex  conjugates  induce  the  
proton  decay  modes  

p  -+  1r°e+,  1l'+v  (4.69)  

at  a  rate  which,  in  the  non-supersymmetric  model,  is  calculated  [15]  to  be  about  
one  hundred  times  the  measured  upper  bound  implied  by  (4.28).  All  of  these  
couplings  arise  from  the  Feynman  diagram  vertices  shown  in  figure  4.2.  

Higgs  bosons  are  needed  in  a  GUT  to  generate  both  the  superheavy  masses  
needed  for  the  non-standard  model  gauge  bosons  and  Higgs  particles,  as  well  as  
electroweak  scale  masses  for  the  W±  and  Z  gauge  bosons.  In  the  minimal  non­
supersymmetric  SUeS)  GUT,  the  electroweak  Higgs  doublet  is  accommodated  
in  a  5  representation  H,  which  in  addition  includes  colour  triplet  scalars  H3  
transforming  as  (3,  I, -})  of  SU(3)  x  SU(2)  x  U(l).  The  Yukawa  couplings  
have  the  form  

I-I  IIKLM ey  =  X[IJ)ho1/l  H  +8  X[IJ)hUX[KL)HM  +h.c.  (4.70)  

where  1/11 ,  X[II)  are  the  5,  10  representations  of  SUeS)  which  include  the  matter  
content  (4.58)  of  the  standard  model.  hu,  ho  are  complex  matrices  (hu,o)jg  
acting  on  the  (undisplayed)  generation-space  labels  of  1/11  and  X(/ J).  Then  the  
colour triplet Higgs  particles have decay  modes  similar to  those  of the  X -boson  

H3  -+  uCdc ,  ul,  dv  (4.71)  

all  of which  violate  baryon-numberconservation.  These  are  shown  in  figure  4.3.  
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Figure  4.3.  Baryon-number  non-conserving  decays  of  SU(5)  GUT  colour  triplet  Higgs  

bosons.  

As  before,  in  (4.68),  the  difference  in  the  baryon  number  B  and  the  lepton  
number  L  is  the  same  for  all  decays:  

B-L=-'J 2 (4.72)  

so  B  - L  is  conserved  in  all  Higgs  mediated  processes.  CP-violation  arises  from  
complex  phases  which  cannot  be  absorbed  by  field  redefinitions  but,  as  we  shall  
see,  there  is  no  contribution  to  t!.B  at  tree  level.  These  couplings  arise  from  the  
Feynman  vertices  shown  in  figure  4.4.  
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Figure  4.4.  Higgs  (5)  hoson  vertices  in  the  minimal  SU(5)  GUT.  Single  lines  represent  5  
representations.  double  lines  10  representations.  

We  have  already  noted  that.  in  the  minimal  SU(5)  GUT.  the  requirements  
(4.40).  (4.44)  necessary  for  departure  from  thennal  equilibrium  are  more  likely  to  
be  satisfied  by  the  massive.  colour-triplet  Higgs  scalar  H3  than  by  the  massive  
gauge  bosons.  so  X.Y  decays  will  not  contribute  significantly  to  the  baryon  
asymmetry  of  the  universe.  Nevertheless.  for  completeness.  we  consider  the  
contributions  to  AB  defined  in  (4.49)  from  both  sources.  First  we  note  that  the  
tree-level  contribution  shown  in  figures  4.1  and  4.2  is  zero.  This  is  clear  because  
in  the  Born  approximation  the  process  X  -.  dv.  for  example.  and  i  -.  dii  
derive from  tenns  in  the  Lagrangian  which  are  Hennitian  conjugate  to  each  other.  
so  their  amplitudes  are  complex  conjugates.  Since  the  kinematics  of  the  two  
processes  is  identical.  

r(x  -.  dv)IBom  =  rei  -.  dii)IBom  (4.73)  

and  the  contribution  to  ll. B  given  in  (4.49)  is  zero.  The  same  argument  applies  to  
the  decays  of  Y  and  H3.  

At  the  next  order.  we  need  to  include  radiative  corrections  and  look  for  (CP­
violating)  contributions  to  ll.B  arising  from  the  interference  between  the  Born  
tenns  and  these  single-loop  radiative  corrections.  For  example.  consider  the  
radiative  correction  to  the  decay  

H3  -.  uft,  (4.74)  

shown  in  figure  4.5  (f. g  are  generation  labels).  
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u  

H3 - - - - ­

I  

Figure 4.5.  Radiative  correction  to  H3  -+  uf.  

The  matrix  element  has  the  form  

dM  ....,  (hDhbhu) f/H  (4.75)  

where  I H  is  the  Feynman  loop  integral  involved.  Since  the  mass  of  the  colour­
triplet  Higgs  satisfies  

mH3  »  mu  + mt  (4.76)  

IH  is  complex.  To  one-loop  order,  the  square  of  the  total  matrix  element  M  
satisfies  

IM  12  - IMol2  ~ 2  Re[dMM~] 

QC  2  Re[(hDhbhu) fg(h~)gfIH] (4.77)  

(no  summation).  Mo  is  the  amplitude  for  the  Born  approximation,  shown  
in  figure  4.3(b).  For  the  corresponding  antiparticle  decay,  we  just  replace  all  
coupling  constants  by  their  complex  conjugates  and  the  difference  between  the  
rates  is  given  by  

r(H3  -+  Uflg)  - r(li3  -+  ufig)  QC  Im[(hDhbhu) f8(h~)gf] Im(lH).  (4.78)  

Thus,  when  we  sum  over  the  generation  labels  the  contributions  cancel,  since  

tr(hDhbhUh~) = real.  (4.79)  

In  fact,  all  such  one-loop  interference  terms  are  the  absorptive  parts  of  one  
or  other  of  the  two-loop  diagrams  shown  in  figure  4.6;  the  absorptive  part  is  
obtained  by  cutting  the  internal  (fermion)  loop  and  placing  the  cut  fermions  on  
the  mass  shell.  The  contribution  just  discussed  arises  from  the  absorptive  part  of  
the  diagram  in  figure  4.6(g).  It  is  clear  that  all  of  the  other  diagrams  also  make  
zero  contribution  to  the  baryon  asymmetry  [16]:  the  gauge  couplings  are  real  and  
the  scalar  couplings  enter  only  in  the  combinations  

tr(huh~) = real  

tr(hDhb)  =  real.  (4.80)  
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(0)  (b)  

(c)  (d)  
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(g)  

Figure  4.6.  Two-loop  diagrams  giving  one-loop  radiative  corrections  to  gauge  boson  and  
Higgs  boson  decays.  

The  first  non-zero  contributions  arise  only  from  the  three-loop  radiative  
corrections  to  H3  decays,  and  the  four-loop  corrections  to  X,Y  decays.  
For  example.  there  are  three-loop  radiative  corrections  to  H3  decay  w_hose  
contributions  to  the  difference  between  the  decay  widths  of  H3  and  H3  is  
proportional  to  ImT.  where  

- t  t  t  h  ht  h T  =  tr(hDhuhuhuhD  DUO)  (4.81  )  
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which,  in  general,  is  non-zero  [17-19].  The  Yukawa  couplings  hU.D  detennine  
the  fennion  masses.  The fennions  in   the three  families   of 10  and 5  representations  
are  unitarily  related  to the   mass  eigenstates,  the  connection being   given  by  

~PmuQ (4.82) hu  =  .J2mw  

~RmDS (4.83) hD  =  ../2mw  

where  P,  Q,  R,  S  are  unitary  3  x  3  matrices and   

mu  =  diag(m"  mc, mu)   (4.84)  

mD  =  diag(mb, ms,  md).   (4.85)  

Then  
gS  

2Im T   = --s- tr(m~(muAm~At, muBm~Bt]) (4.86)  
16mw  

where  A  and  B  are  the  unitary  matrices  

A  =  ptR  B  = QS t .  (4.87)  

It  is  easy  to  see  that the   dominant contribution  to   the  trace  is  proportional  to  [20]  

m:m:mc!(9) sin  8   (4.88)  

where  /(9)  is  a  real  function  of the   mixing  angles  characterizing  the  matrices  
A, B   and  8  is  a  CP-violating  phase.  Remembering  that  the  total  decay  width  of  
the  (colour-triplet)  Higgs  scalar  is  given  by  (4.43)  with  m f  =  m,  the  heaviest  
fennion,  we  conclude  that  the  baryon  asymmetry  deriving  from  the  minimal  
SU(5) GUT  satisfies   

llB  <  (aG)3 m: m,mc 
'"  2  ,...  10- 15  (4.89) 

1r  m6  • 
w  

However,  using  (4.52) and   the  observational  data (4.18),   we  require  that  

llB ~ 6N.  x  10-10  >  10-7  (4.90) 
'"  

so  there is   no  doubt that   this  mechanism cannot  explain  the   measured  asymmetry.  
In  any  case,  we  have  already noted  that  this   minimal theory  gives  an   unacceptably  
high proton   decay  rate.  

The  foregoing  discussion  suggests  that  to  increase  the  predicted  value  of  
llB, we   need  to  arrange that  the   asymmetry can   arise  via one-loop  corrections  to   
the  Higgs decays.  This entails  enlarging  the   Higgs  content.  The  simplest method   
is  to  include  a  second  5  of Higgs   scalars  H',  with  a  different  mass  or  lifetime,  
whose couplings  are   of the  same  fonn (4.70)  but  with   the coupling  matrices  hU.D   
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q  ...  H 
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X,Y  V\I\IV( ::  I  x~ 
....  ....  

q  ....  H  

Figure 4.7.  CP-violating. baryon-number  non-conserving  decays  of X.Y bosons.  

replaced  by  hU.D'  Then.  besides  the  radiative  correction  to  H3  decay  shown  in  
figure  4.5,  there  will  be  a  similar  diagram  involving  H)  exchange.  The  difference  
between  the  decay  rates  now  satisfies  

r(H3  -+  Uflg)  - r(l13  -+  "fig}  ex  Im[h~h1huh~]lm(lH') (4.91)  

instead of (4.7S).  In  general.  this  is  non-zero  [IS].  
Unfortunately,  such  a  model  is  unsatisfactory  in  other  respects.  It  will  have  

flavour-changing.  Higgs-mediated  neutral  current  decays  [21]  and.  in  addition.  
like  the  model  with  a  single  5  of  Higgs,  it  continues  to  possess  the  strong  CP  
problem.  (See  section  5.3.1.)  We  shall  see  later  that  the  most  attactive  solution  
to  the  latter  problem  utilizes  a  Peccei-Quinn  U(l)  symmetry  [22].  This  requires  
additional  Higgs  doublets.  so  that  one  doublet  H  is  coupled  only  to  dR  quarks  
and  the  other  doublet  H'  only  to  UR  quarks.  This  is  realized  in  an  SU(5)  GUT  
by  coupling  one  Higgs  5  to  the  matter  (5)(10)  and  the  other  to  the  (10)(10)  
fields  [23].  Thus,  instead  of  (4.70).  we  have  

.l.iH-J  hi  I  IJKLM C Y  =  X[IJ) h D."  +  X[IJ)  UX[KL]HME  + h.c.  (4.92)  

This  looks  as  though  the  one-loop  radiative  correction  shown  in  figure  4.5  is  
now  forbidden,  since  the  exchanged  Higgs  has  to  have  both  D-type  and  U­
type  couplings.  However,  it  is  allowed,  since  the  Higgs  mass  eigenstates  mix  
H  and  H'.  Nevertheless,  there  is  no  CP-violation  and,  hence.  no  contibution  
to  the  baryon  asymmetry,  for  the  reason  (4.79)  given  earlier.  Instead,  in  this  
model.  the  (CP-violating)  baryon  asymmetry  arises  from  the  decays  of  X,  Y  
gauge bosons with a pair  of Higgs bosons  in the intermediate  or final  state [24.25]  
(see  figure  4.7),  and  a  sufficient  asymmetry  arises  for  a  wide  range  of parameters  
[17,26].  

Another  variant  of  the  SU(5)  minimal  model  is  to  introduce  a  Higgs  
multiplet  belonging  to  a  different  representation,  i.e.  not  a  5.  Since,  in  SU(5),  

"5  x"5  =  10+ 15  

"5  x  10  = 5+45  

10  x  10  ="5  + 45  + 50  (4.93)  
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Higgs  belonging  to  10,  15,  45  or  50  representations  can  be  coupled  to  the  matter  
fermions.  In  particular,  the  introduction  of a  45  Higgs  representation  also  allows  
the generation  of sufficient baryon asymmetry for a wide  range  of parameters [17].  

4.5  8aryogenesis in  SO(10)   GUTs  

We  have  discussed  the  SU(5)  GUT  at  some  length,  despite  its  inadequacies.  
There  are,  however,  other  GUTs,  based  on  larger  (higher-rank)  groups,  which  
some  consider  to  be  more  attractive,  and  which,  in  any  case,  possess  features  
which  are  not  present  in  the  SU(5)  GUTs.  In  particular,  as  a  vector-like  theory,  
S0(10)  has  the  desirable  feature  of  being  automatically  anomaly-free.  Another  
attraction  is  the  fact  that  it  includes  all  of  the  fermions  of  one  generation  within  
a  single  irreducible  16-dimensional  (spinor)  representation  of the  group.  In  tenns  
of the  representations  of SU(5)  x  U(I)  C  S0(10),  it  decomposes  as  

16  =  (1,  -5)  +  (5,3)  +  (10,  -1)  (4.94)  

with  the  second  number  specifying  the  U(1)  charge  of the   SU(5)  irreducible  
representation.  The  5  and  10  irreducible  representations  are  precisely  those  to  
which  the  matter fermions  are   assigned  in  SU(5), shown   in  (4.62),(4.63), and   the  
extra SU(5)  singlet  state,   which must  exist  if  SO(IO) is   correct, could  be   a  right­
chiral  neutrino  VR  '" vf:   this  latter possibility   looks  feasible  as  well  as  attractive  
in  the  light  of evidence   [27]  for  neutrino  oscillations  which  can,  of course,   only  
arise  if  neutrinos  have  (different)  masses  and,  therefore,  possibly  right-chiral  
components.  (The  existence  of such   a  state  also  allows  for  the  possibility  of  
a  Majorana  mass  tenn.)  The  inclusion  of both   of the   chiral  components  of all   
fermions  within  the  same  GUT representation  means   that charge  conjugation  (C)   
and parity  reversal   (P) are   naturally symmetries  of  the GUT  and  are   spontaneously  
broken when   the  GUT breaks  to  a  gauge  group  which  does  not  have  this  property.   
This  occurs  at  a  high  scale  if,  as  it  might,  S0(10)  breaks  to  SU(5)  or  to  
S U (5)  x  U (I). This   happens if,  for  instance,  the  GUT  symmetry-breaking  Higgs   
are  also in   a  16  representation.  

However,  there  are  other possibilities.   Clearly  

S0(10)  ::>  SO(6)  x  SO(4)  (4.95)  

so,  since  

SO(6)  ~ SU(4)  

SO(4)  ~ SU(2)  x  SU(2)  (4.96)  

one  possibility  is  that  the SO(IO)   breaks at  the   GUT scale   as  

MG 
S0(10)  .....  SU(4)  x  SU(2)L  x  SU(2)R  = G422.   (4.97)  
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This  happens  if,  for  instance.  the  GUT  symmetry-breaking  Higgs  transforms  as  a  
S4-dimensional  representation.  Then  the  16-dimensional  fermion  representation  
is  given  by  

16  =  (4,2.  I)  +  (4.  1.2)  

=  [(~: t·(::  )J+[(  !!r  t,(!v~)J (4.98)  

for  the  first  generation.  At  later  stages.  the  SV(4)  breaks  at  a  scale  Mc  and  the  
SV(2)R  breaks  at  a  scale  MR  as  

SV(4)  ~ SV(3)c  x  V(I)'  (4.99)  

and  
MR 

SV(2)R  -+  V(I)T)' (4.100)  
R  

So  either  
Mc  MR  MJ  

G422  -+  G3122  -+  G3121  -+  G sm  (4.101)  

or  
MR  Mc  MJ  

G422  -+  G421  -+  G3121  -+  G sm  (4.102)  

where  

G3122  ==  SV(3)c  x  V(I)'  x  SV(2)L  x  SV(2)R  (4.103)  

G3121  ==  SV(3)c  x  V(I)'  x  SV(2)L  x  V(I)T) (4.104) 
R  

G421  ==  SV(4)  X  SV(2)L  x  V(I)T) (4.105) 
R  

and  Gsm  =  SU(3)c  X  SV(2)L  x  V(I)y  is  the  standard  model  gauge  group.  
The content  of the 4  representation  of SV (4)  under  the  decomposition  (4.99)  

is  
4=(3.!)+(1.-1)  (4.106)  

since  V(I)'  is  a  (traceless)  generator  of SV(4).  We  have  used  a  normalization  of  
the  hypercharge  Y'  which  shows  that,  for  fermions  only.  

y'  =  B-L.  (4.107)  

This  was  first  noted  by  Pati  and  Salam  [28]  and.  for  this  reason  V  (I)'  is  sometimes  
denoted  V(I)B-L.  At  any  rate,  unlike  the  SV(5)  GUTs.  it  ;s  possible  to  break  
B  - L  conservation  in  SO(lO)  models.  As  previously  noted.  the  scale  MI  at  
which  V  (I)'  and.  therefore.  B  - L  conservation  is  broken  is  not  necessarily  the  
scale  at  which  S0(10)  is  broken.  

In  fact,  the  SO(IO)  group  has  an  element  D  which  interchanges  the  charge  
conjugate  doublets  within  the  16  representation  (4.98).  To  see  this.  we  choose  
the  decomposition  (4.95)  so  that  the  Cartan  subalgebra  of  SO(6)  is  generated  by  
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the  SO(IO)  generators  M I2 ,  M34 ,  M56  and  that  of  SO(4)  by  M78 ,  M9•1O•  The  
Cartan  subalgebras  of  SU(2)L,R  are  then  generated  by  Tl.R  = !(M 78  ±  M9.1~. 
We  first  note  that  

D=M23~7 (4.108)  

where  
(MGb)"j  =  8~8~ - 8~8~ (4.109) 

- 'J  J'  

is  an  element of SO(IO).  The  action  of D  on  the underlying  10-dimensional  space  
is  to  reflect  the  coordinates  xG  ...  _xG  (a  =  2,3,6,  7)  leaving  the  remainder  
invariant.  Thus,  the  effect  of  D  on  the  Cartan  subalgebra  of  SU(4)  ;;::  SO(6)  is  
to  reverse  the  signs  of  the  generators  

D:  T 3•8•IS  ~ _T3•8•15  (4.110)  

while  on  that  of SU(2)L  x  SU(2)R  

D:  Tl  ...  T~. (4.111)  

Thus,  
D  :  (4,1,  1)  ...  (4,  1,1)  (4.112)  

as  asserted.  
Because  of  this,  unlike  the  SU(5)  GUTs,  a  baryon  asymmetry  is  often  not  

generated  at  the  GUT-breaking  scale  but  rather  at  the  lower  scale  MI  at  which  
U ( I)'  is broken.  Whether  or not this happens,  of course, depends upon the Higgs  
fields  responsible  for  this  symmetry  breaking  and  their  coupling  to  the  matter  
fields.  The  Higgs  fields  that  couple  to  matter  must  be  in  one  or  more  of  the  
SO(IO)  representations  occurring  in  the  product  

16  x  16  =  10,.  +  1200  +  126s •  (4.113)  

For  example,  with  the  colour-triplet  Higgs  particles  belonging  to  the  10­
dimensional  representation,  the  symmetry  (4.112)  ensures  that  

r(H3  ~ iQ)  =  r(H3  ~ lQ)  (4.114)  

at  one-loop  level,  so  no  baryon  asymmetry  results,  similarly  in  the  QQ  channels  
[29].  However,  if  the  Higgs  content  is  enlarged  to  include  a  4S-dimensional,  a  
l26-dimensional  and  an  additional  10-dimensional  representations,  then  with  a  
suitable  choice  of  (4S)  we  can  break  

S0(10)  ~ G3122  (4.115)  

in  a  way  which  breaks  the  D-symmetry  (G3122  is  defined  in  (4.103».  This  is  
done  by  ensuring  that  the  non-zero  VEVs  are  odd  under  D.  In  addition,  the  
extra  Higgs  content  splits  gL  and  gR,  the  coupling  constants  of  the  SU(2)L.R  
groups,  and  ensures  that  the  colour-triplet  Higgs  mass  eigenstates  are  complex  
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superpositions  of  those  coming  from  the  two  10s.  This  is  sufficient  to  generate  a  
baryon  asymmetry  at  the  GUT  symmetry-breaking  scale  [29].  

The  lesson  to  be  learnt  from these  considerations  is  that  a  baryon  asymmetry  
can  arise  in  such  theories  but  that  the  energy  scale  at  which  it  arises  may  be  
much  lower  than  the  GUT  scale.  The  magnitude  of any  such  asymmetry  depends  
sensitively  on  the  details  of  the  particular  model  but,  in  many  models,  there  is  
ample  room  in  parameter  space  to  accommodate  the  observed  asymmetry.  

4.6  Status of  GUT  baryogenesis  

The  discussion  in  the  two  previous  sections  of  baryogenesis  using  the  baryon­
number  non-conserving  interactions  of  a  GUT  was  based  upon  the  assumption  
that  the  superbeavy  GUT  gauge  bosons  or  Higgs  particles  whose  decays  produce  
the  desired  baryon  asymmetry  are,  in  the  first  place,  in  thermal  equilibrium  
and  then,  as  the  universe  expanded  and  the  temperature  dropped,  came  out  of  
equilibrium  when  the  condition  (4.37)  was  satisfied.  It  is  at  least  debatable  
whether  this  assumption  is  well  founded.  

We  shall  see  in  chapter  7  that  there  are  strong  theoretical  reasons,  and  some  
support  from  observational  data,  for  believing  that  the  universe  went  through  a  
period  of  'inflation',  during  which  the  scale  factor  grew  by  a  factor  of  order  
10'27,  so  that  the  observable  universe  evolved  from  a  single  Hubble  volume.  It  
is,  therefore,  essential  that  the  baryon  asymmetry  we  observe  was  generated  after  
inflation:  any asymmetry  generated  earlier  would  be  so  diluted  by  the  inflation  
as  to  render  it  utterly  unobservable  at  the  present  time.  This  is  the  source  of  the  
difficulty  with  the  scenario  envisaged  hitherto.  To  generate  the  required  amount  
of inflation  requires  the  inflaton  potential  to  be  rather  flat:  (the  'inflaton'  (q,)  is  the  
presumed  field  whose  evolution  determines  how  much  inflation  actually  occurs).  
This  means  that  the  mass  of the  inflaton  is  relatively  low  [30],  in  the  range  

m.  ~ 1013_1015  GeV  (4.]  16)  

to account for the observed flatness  and homogeneity  of the universe and to solve  
the  horizon  problem I.  When  it  reaches  the  minimum  of its  potential,  the  inflaton  
oscillates  about  its  value  at  the  minimum.  As  it  does  so,  somehow,  this  low­
entropy,  cold  universe  evolves  into  a  hot  universe  dominated  by  radiation.  The  
key  question  is:  What  is  the  temperature  of  this  'reheated'  universe?  This  is  a  
vital  question  because  the  bound  (4.116)  means  that,  in  some  cases,  

m.  <  2mx  (4.117)  

where  m X  is  the  mass  of  the  particle  whose  decays  generate  the  baryon  
asymmetry.  This  is  the  case  in  the  minimal  SU(5)  GUT,  for  example,  where  

I  This  is  because  m~ - V"(I/»,  and  the  double  derivative  is  constrained  by  the  condition  (7.45)  with  

V(I/»  satisfying  (7.117).  
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x  = H3  is  the  colour-triplet Higgs  particle   with  

14  mH3  ~ 10 GeV.  (4.118)  

In  these  circumstances. the   decay  

~~xi (4.119)  

is  kinematically  forbidden.  so  if X   particles  are  created.  they  must  be  created  
by  thermal  production  in  the  reheated  universe.  (This  is  why  our comments   in  
section  4.5  about  the  possibility  in  other  GUTs  of baryon   asymmetry  arising  at  
a  scale  well  below  MG  are  pertinent.)  So  the  next  question  is:  What  is  the  
abundance  of the   out-of-equilibrium  X  particles  thus  created?  It is   beyond  our  
scope  to discuss  here   the  calculation of  the  reheating temperature,  the   abundance,  
and  other questions   which  arise.  in  any  detail.  The  interested  reader  is  referred  
to  [31]  and  references  therein.  We  shall  content  ourselves  with  noting  the  
conclusions  which  have  been  reached  from  these  studies.  A  mechanism  called  
'parametric  resonance',  deriving  from  nonlinear  quantum  effects,  leads  to  a  
phenomenon called   'preheating'  during  which  copious production  of  X   particles  
occurs  even  though  these  are  heavier  than  the  inflaton.  It appears   that  the  out­
of-equilibrium scenario,  upon  which our  analysis   was  predicated, arises   naturally  
and that the  right amount of  baryon asymmetry is  produced for a  very  wide  range  
of decay widths  of  the  X  particles.  

Notwithstanding  this  highly  welcome  outcome,  one  is  naturally  led  to  
wonder whether the observed  baryon asymmetry might  not have a  different  origin.  
Although,  as  we  have  noted,  there  is evidence  of  (supersymmetric)  unification   of  
coupling  strengths,  this  does  not  necessarily  entail  the  existence  of a   GUT.  It  is  
quite  conceivable.  in  the  context  of string   theory  for  example.  that  there  is  no  
GUT.  If so,  the  observed baryon   asymmetry  must have   a  different origin.   This  is  
the  topic to   which  we  now  turn.  

4.7  Baryon-number non-conservation  in  the  Standard  Model  

It  is  easy  to  see  that  the  standard  model  Lagrangian,  having  the  local  gauge  
symmetry group  SU(3)c  x  SU(2)L  x  U(l)Y,  is  also   invariant under  the  (classical)   
global  U(l) transformations   associated  with  the  baryon  number  (B)  and  lepton  
numbers (Nt.  l   = e,  11-,  r) in   which  fermion  fields  'I/I(x)  transform as   

'I/I(x)  ~ eiB8'1/1(x)  (4.120)  

'I/I(x)  ~ eiNt8 '1/1(x).  (4.121)  

When (J   is  local,  the  first  of these (4.120),  for  example,  applied   to  the  kinetic  term  
produces a  change  8S   in  the  action  

8S  = - f d4x  (ty" B1/I'I/I)a,,(J  
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=  d4x  (Ja",(1;Fy'" B",1/I)   (4.122)  

where  B",  is  the  baryon  number  of 1/1.   Since  the  remainder of  the   Lagrangian  
density  is invariant  under  the   (global  and  therefore  the  local)  transformation,  the  
(Noether) current   

j!B)  ==  L ~y",B",1/I  (4.123)  

associated  with  baryon number,   is  divergenceless 
'" 


 

a'" j~B)  = 0  (4.124)  

and  B  is conserved at every order of  perturbation theory.  Similarly, for the lepton  
currents,  

j~Lt) ==  L ~y",Llt1/l  (4.125)  

t  
However,  classical  symmetries  such  as  these  are  generally  not preserved   at  the  
quantum  level  [32-34).  In  particular,  in  a  chiral  theory.  in  which  the  left·  and  
right·chiral fermion  states  are  coupled  differently,  as  occurs  in  electroweak  theory,   
there  are  chiral  anomalies  resulting  from  the  non· invariance of  the   field  measure  
V1/IV1;F  in  the  functional  integral  determining the   generating function   [34J.  This  
non·invariance is   equivalent to   a  further change  "S'   in  the  action  

8S'  = 32~Z  f d4x(J(x)[tr[{F~~), P",,,(L)}BJ  - tr[{F~!), P",,,(R)}BIl  (4.126)  

where  F~~) ==  ta ~~L)  is  the  gauge  field  strength  coupled  to  the  left-chiral  

component 1/IL   ==  !(l  - Ys)1/I  of 1/1;   ta  is  the  generally  matrix-valued coupling   
of the   representation  of the   gauge group   to  which  the  left·chiral  component 1/IL   
of the   fermion  belongs,  P~~) ==  !E",,,pa Fpa(L)   is  the  dual  field  strength  and  {,  }  

denotes  anticommutator.  The  trace  is  over  all  fermions  1/1.  Similarly  for  F~~). 
Thus, combining  this  with   (4.122),  we  see  that quantum  effects  require   that  

alolj,(B)  = __ 1_ tr[{F(L)  P",,,(L)}B  _  (F(R)  P",,,(R)}B]  (4.127) 
'"  321rz  101"  '  101"  '  •  

For  the  standard  model,  we  note  that  there  is  no  contribution  to  the  divergence  
from  the  SU(3)c group,  because,  for  each  quark  flavour,   

F(L)  - F(R)  (4.128) 
"'''  - IoIIJ'  

The  left-chiral  quark  states  Q L  of the   first  generation  are  coupled  both  to  the  
SU(2)L  field  strength W: IJ  (a  = 1,2,3)  with   ta  = gZ!T"  (T"  are  the  2  x  2  Pauli  

matrices)  and  to  the  U(I)y  field  strength  B",IJ  with  strength  g) YL   =  g) A.   The  

f 
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right-chiral  quark  fields  UR.  dR  are  coupled  only  to  Bp.lI  with  strength  gtYR  =  
gl i.  gl  =f   respectively.  Thus  the baryon  number  current   

i!B)  ==  l L  qYp.q   (4.129)  
q  

satisfies  
ap.}·{B)  = _  Na  [g2Wa  Wap.lI  _  g2B  SP.lI] 

p.  321r (4.130)  2  2  p.1)  1  P.lI  

where Na   = 3 is the number of  fennion generations. (It  is important to remember  
that each  quark  flavour   q  occurs in   three colours.)   The meaning  of  this important   
equation  is  that the   quantum average,   the  expectation value,   of the   divergence  is  
equal  to  the  expression  on  the  right-hand  side  in  a  fixed  background  field  given  
by the   gauge fields   W:(x) and   Bp.(x)  [35].  

In  the  same  way, it  is  easily seen   that the   lepton number  currents   

j~Ll) ==  VtYp. Vt   + lyp.l  (l =   e.  /L.  t')  (4.131)  

satisfy  

aP. iLL>  = _1_ap.  iB)  (4.132) p.  Na  p.  

and it  follows   that (1/  NG)B - Lt is  conserved  for  each  l.  Also.   defining the  total   
lepton  number  

L==LLt  (4.133)  
t  

we  see  that  B  - L  is  conserved. even  though   neither B   nor Lis.   
Both  of  the  field-strength  factors  on  the  right-hand  side  of  (4.130)  are  

expressible as   total  divergences:  

Bp.lISP.1)  =  ap.kp.  (4.134)  

where  
kP.  =  ~P.lI/XI Blip Ba   (4.135)  

and  
Wa  Wap.1)  

 
= a  KP.  

P.lI (4.136) IL   
where  

KIL  - EILlI/XI[wa  Wa +   Ig2~abc~WbWc]- lip  a  J  lIpU  

=  2EP.lI/XI  tr[WlIp  Wu  - i~g2 WI) Wp   Wa].  (4.137)  

Note  that.  although  the  divergences  ap.kIL  and  ap.Kp.  are  gauge  invariant,  the  
individual  currents  are  not.  In  the  first  instance.  let  us  consider  the  (classical)  
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background  vacuum  fields  in  the  SU(2)L  x  U(l)y  theory.  The  standard  solution  
is  to  take  all  fields  to  be  zero  except  for  the  Higgs  doublet  for  which  

t/>vac  =  (4.138) _1 ..ti  (0)_ 
v  =  t/>o  

where  v  is  constant.  Both  KJ.I.  and  kJ.l.  are  then  zero.  of  course.  Because  of  the  
SU(2)L  x  U(l)y  gauge  invariance  of the  Lagrangian.  we  could  as  well  choose  a  
gauge  transformation  of this  solution.  Then.  

t/>vac(x)  =  U(X)UI (x)t/>o  (4.139)  

where  UI  (x)  is  a  general element of U(l)y  and  U(x)  is  likewise  a  general  element  
of SU(2)L.  so  we  may  write  

U(x)  =  a(x)h  + iT  .  b(x)  (4.140)  

with  
det  U(x)  = a(x)2  + b(x)  .  b(x)  = I.  (4.141)  

Thus.  U (x)  can  be  regarded  as  a  mapping  from  spacetime  into  the three-sphere  
(S3)  which  is  the  group  space  of  SU(2).  In  this  gauge.  the  U(l)  vector  potential  
is  non-zero:  

B;ac  =  i.(CJJ.l.UI)UI I  (4.142)  
gl  

but, of course. the (gauge-invariant) field  strength  B;~c is  still  zero  and  kJ.l.  remains  
zero:  

kvac  = o.  (4.143) 
J.I.  

Similarly.  in  this  gauge.  the  S U  (2)  gauge  field  becomes  

.  1  
Wvac  =  ~(CJ U)U- I  ==  -T  .  W  (4.144) 

J.I.  g2  J.I.  2  J.I.  

and.  with  the  parametrization  (4.140).  this  gives  

2  
W~ac =  --(aCJJ.l.b  - bCJJ.l.a  +  CJJ.l.b  x  b)  (4.145)  

g2  

For  future  reference,  we  note  that,  using  (4.141),  

W~ac .  W~ac =  42  [(CJJ.l.a)(CJva)  +  (CJJ.l. b)  .  (CJ)./b)]  
g2  
4  

(4.146) =2YJ.l.v  
g2  

where  YJ.l.V  is  the  metric  on  S3  for  the  spacetime  coordinates.  The  vacuum  state  
described  by  (4.144)  may  be  taken  to  be  time-independent  and  such  that  U  ~ 12  
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as  Ix I  .....  00.  Then  U  effectively  maps  the  S3  of  real  space.  obtained  by  
identifying  points  at  infinity.  into  the  S3  which  is  the  SU (2)  group  space  [36].  
Such  mappings are   characterized by  their  homotopy  class.   Since  

1r3(S3)  =  Z.  (4.147)  

where  Z  is  the  group of  integers.  any  such  mapping is   associated  with  an  integer  
which counts   the  number of  times  the  spacetime  S3  is  wrapped around   the  (unit)  
S3  of the  internal  SU(2) space.   

Now.  the  field  strength  W;~c constructed  from  w;ac  is  zero  but  the  current  
K JI.  (4.137) is   no  longer zero:   

KJl.vac  = _   4ig2  fJl.\lfXI  tr[WvacWvacWvac]  
3  \J  

(4.148) P  a .  

So  

KOvac  =  g2  fOij/cfabc(W~vacW~vacW/ccvac)
3  I  J  

=  - 2g2  det W  vac •  (4.149)  

Also  
det w vac  = J  det G  (4.150)  

where  

Gij  = Wrac.   Wj8C  =  ~Yij (4.151)  

and  Yij  is  the  metric  (4.146) on   S3  for  the  spatial  coordinates.  Thus.  if we   define  

K  ==  /  d3x  KOvac  (4.152)  

we  have  that  

K  =  - 2' 16/  d3xJdety 
g2  

=  - ~ {  dV  
g~ ls3  
321r2 

=  ---n  (4.153)  
g~ 

where  n  is  an  integer  which  counts  the  number  of wrappings   of the   internal  S3  
provided  by  the  mapping  U;  the  volume  of the   unit  S3  is  21r2.  For  a  general  
(non-vacuum) field   configuration.  

321r 2  
K=-2-Ncs  (4.154)  

g2  
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where  Ncs  is  the  Chem-Simons  number.  It  derives  from  the  existence  of  a  3­
form  K(3)  which  arises  because  the  4-form  tr(W(2)  1\  W(2»  is  exact;  W(2)  ==  
WILV  dx lL  1\  dx v  is  the  field  strength  2-form.  Thus,  in  our  (vacuum)  case,  Ncs  
is  just  (minus)  the  winding  number  n.  

Evidently  electroweak  theory,  unlike  QED,  has  an  infinity  of  topologically  
distinct  vacua,  which  may  be  labelled  with  their  Chem-Simons  number.  These  
vacua  are  not  physically  distinct  [36]:  they  are  gauge  transformations  of  each  
other,  as  we  have  emphasized.  Now  consider  the  total  baryon  number  

B  ==  /  d3x  jO(B)  (4.155)  

and  let  the  gauge  and  Higgs  fields  be  general  and  have  time  dependence.  Then  
the  baryon  number  B  will  also  be  time-dependent.  In  a  time  interval  (Ij,  If),  the  
change  is  

ll.B  =  1"  dl  aoB  =  /  d4x  alLjlL(B)  (4.156)  

assuming  that  j(B)  vanishes  at  spatial  infinity.  Note  that  using  (4.130)  this  ;s  
gauge  invariant.  Using  (4.  134),(4.136)  and  (4.143),  we  see  that  

2/ 
ll.B  =  - N Gg2  d4x  a  KIL  
3211'2  IL  

NGg~ 
(4.157) =  - 3211'2  ll.K.  

Now  suppose  that  in  this  time  interval  the  gauge  and  Higgs  fields  traverse  a  
non-contractible  loop  in  the  field  configuration  space,  starting  and  finishing  in  a  
vacuum  configuration.  Then  the  change  ll.K  is  given  just  by  the  vacuum  formula  
(4.153),  which  gives  

ll.B  =  -NGll.n  =  NGll.Ncs.  (4.158)  

In  other  words,  in  the  standard  model,  baryon-number  non-conservation  arises  
in  integer  multiples  of  NG  whenever  the  initial  and  final  vacuum  states  are  
topologically  distinct.  

It  is  instructive  to  consider  what  is  happening  using  Dirac's  picture  of  the  
vacuum  as  the  state  with  all  negative-energy  fermion  levels  filled  [37].  We  start  
(at  t;)  and  finish  (at  t f)  in  this  state.  In  the  presence  of  non-zero  field  strengths  
and  Higgs  fields,  we  expect  the  energy  levels  to  be  displaced  at  intermediate  
times.  In  the  (trivial)  case  of QED,  for  example.  although  the  levels  are  perturbed  
from  their  values  at  tit  they  each  return  to  their  original  level  at  t/,  because  the  
electromagnetic  field  interacts  with  the  left- and  right-chiral  fermion  components  
with  equal  strength.  However,  the  baryogenesis  with  which  we  are  concerned  
derives  from  the  chiral  nature  of  electroweak  theory:  only  left-chiral  fermions  
interact  with  the  SU(2)  gauge  bosons.  Depending  on  the  field  configurations.  this  
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Figure 4.8.   Fermion  energy-level  crossing  in  electroweak  theory.  

chiral  property  allows  the  energy  levels  of all  of the  (infinite  number  of)  negative  
energy  states  to  be  raised  by  one  (or  more)  level  such  that  at  t,  all  of the  negative  
energy levels remain occupied.  In the process, one (or more)  of the  positive  energy  
levels  is  occupied  and  we  see  one  (or  more)  fermions  produced.  (See  figure  4.8.)  

Of  course.  if  just  one  fermion  is  produced,  angular  momentum  is  not  
conserved.  and,  in  fact,  electroweak  theory  with  just  one  doublet  is  inconsistent:  
it  has  a  chiral  anomaly.  In  the  realistic  case.  each  generation  has  four  doublets:  
three  (colours  of)  quark  doublet  and  one  lepton  doublet.  Thus,  with  nG  =  3,  
there  are  12  doublets  in  all  and  with  the  minimum  of just  one  level  crossing,  12  
fermions  are  created,  nine  quarks  and  three  leptons.  An  allowed  process.  which  
has  total  charge  zero,  so  charge  is  conserved  but  has  baryon  number  3  and  each  
lepton  number  I,  so  that  Nt.  - ! B  is  conserved  might  create  from  the  vacuum  

uudeuddv/luddvr  (4.159)  

or,  equivalently,  
- +- ­pn  -+  ne  V"V'l"  (4.160)  

4.8  Spbaleron-induced  baryogenesis  

At  intermediate  times  between  t;  and  t"  there  are  non-vacuum  field  
configurations,  which  necessarily  have  higher  energy  associated  with  them.  The  
situation  is.  therefore.  analogous  to  a  particle  moving  in  a  one-dimensional  
periodic  potential  V (x).  in which a potential barrier separates adjacent minima.  If  
the  particle  has  energy  E  less than  the  barrier height, classically  it remains  trapped  
in  one  of the  valleys  of the  potential. oscillating between  the  turning points where  
the  total  energy  E  =  V(x).  However.  quantum  mechanically  there  is  a  non-zero  
probability  of  penetrating  the  barrier.  In  the  semi-classical  approximation,  the  
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amplitude  for  transmission  is  given  by  the  WKB  formula  in  which  the  amplitude  
is  suppressed  by  an  exponential  factor  

(4.161) T  =  exp(  -1:'  P  dx )  

where  p(x)  =  ,J2m[V(x)  - E]  and  the  limits  of  integration  Xo  and  Xl  are  the  
two  points  at  which  the  kinetic  energy  of  the  classical  particle  is  zero,  so  that  
V(xo)  =  E  =  V(Xl).  It  is  convenient  to  choose  the  zero  of  energy  such  that  
E  =  O.  Suppose  that  Xo  is  a  minimum  of  V(x),  so  that  we  are  considering  the  
probability  of  a  particle  in  classical  equilibrium  tunnelling  through  the  potential  
barrier.  In  several  dimensions,  (minus)  the  exponent  in  (4.  ]61)  generalizes  [38]  
to  

b  ==  l X1  ds  J2mV(x)  (4.]62)  
Xo  

(where  ds2  =  dx  .  dx)  and  the  integral  is  to  be  evaluated  along  the  path  for  which  
b  is  a  minimum.  The  required  path  r(r),  therefore,  satisfies  

d2r  
m-=VV  (4.163) 

dr2  

with  
1  dx  dr  _  V(x)  =  O. 
2 m-·  

dr  
(4.164) 

dr  

Equation  (4.163)  is  just  the  Euler -Lagrange  equation  for  the  imaginary-( or  
Euclidean-)time version  of Hamilton's principle, in  which the  formal  substitution  
r  =  ;  t  is  made.  In  other  words, it  minimizes  the  Euclidean  action  

(4.]65) SE  =  f dr  LE  

where  
1  dr  dx  

LE  ==  -m-·  - +  V(x).  (4.166) 
2  dr  dr  

Equivalently, it describes the motion  of a particle in time r  moving in the inverted  
potential  - V  (x).  It  is  clear  then  that  the  classical  equilibrium  point  xo  can  only  
be  reached  asymptotically,  as  r  -+  -00  

lim  r  = ro.  (4.167)  
~ .....  -oo  

We  can  choose  the  time  at  which  the  particle  reaches  r"  where  dr/dr  =  0  next,  
to  be  r  = O.  Then  the  exponent  b  may  be  written  as  

lx,  1° b  =  ds  J2mV(x)  =  dr  LE.  (4.168)  
Xo  -00  
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For positive  t'. the motion is just the reverse  of the motion for negative  t' , so that  

b  =  !  100  dt'  LE  =  !SE.  (4.169)  
-00  

Thus.  the  quantum-mechanical  transition  rate  r  at  which  the  particle  tunnels  
through  the  potential  barrier  is  exponentially  suppressed  as  [39.40J  

r  ex  e-SE •  (4.170)  

In  a  quantum  field  theory.  to  find  the  transition  rate  between  adjacent  vacua  
we  need  a  field  configuration  which  interpolates  between  them  in  Euclidean  
spacetime.  as  in  section  2.9.  We  can  get  a  feel  for  what  is  involved  using  an  
observation  made  by  Belavin  et  01  [41J  and  't  Hooft  [42J.  For  a  Euclidean  
spacetime.  J d"x  (W;"  - W;,,)2  ~ O.  (4.171)  

So.  ignoring  the  Higgs  contribution.  the  action  is  

Wa  Wa S I  Jd4  I  Jd4  W-a  W-a  
E  =  4  X  /.I."  /.I."  =  4  X  /.I."  /.1.11  

I  Jd4  Wa  W-a ~ 4  X  /.1.11  /.1.11  

=!  J d4xa/.l.K/.I.  

81r 2  
=  -2 I1Ncs  (4.172)  

g2  

where  we  have  used  (4.136)  and  (4.154).  So  a  gauge  field  configuration  which  
interpolates  between  vacua  with  I1Ncs  =  I  will  have  EucIidean  action  

2rr  
SE(1)  ~-. (4.173) 

a2  

Already  we  can  see  that  the  tunnelling  probability  is  likely  to  be  incredibly  small.  
since  

exp[-SE(1)J'"  10-80  (4.174)  

using  
ail  ~ a~ sin2 9w  ~ 30  (4.175)  

as  suggested  by  current  data.  Of  course,  (at  zero  temperature)  in  a  pure  Yang­
Mills  theory.  such  as  this.  nothing  sets  the  overall  scale.  so  we  may  not  yet  write  
down  the  tunnelling  rate  per  unit  volume.  To  do  this,  we  need  to  consider  the  
spontaneously  broken  theory.  

A  related  problem  is  to  determine  the  energy  scale  of  the  potential  barrier  
separating  adjacent  minima.  The  schematic  diagram  in  figure  4.9  suggests  that  



SphaJeron-induced  baryogenesis  123  

E 
 

),  <  I  

1  

"1<  ,,<  •  [A,<t>l  
o  2  1  

Figure  4.9.  Schematic  picture  of  the  dependence  of  the  static  energy  of  the  gauge-Higgs  

system  upon  the  field  configuration  [A.  4>1.  The  minima  are  topologically  distinct  vacua,  

labelled  by  the  integer-valued  Chern-Simons  numbers.  The  maxima,  on  this  slice.  are  

unstable  sphaleron  configurations.  

the  barrier  height  will  be  the  enerfY  associated  with  a  field  configuration  having  
Chern-Simons  number  Ncs  =  l'  (Remember  that  Ncs  is  only  integral  in  a  
vacuum  field  configuration.)  Manton  [36]  and  Klinkhamer  and  Manton  [43]  
constructed  just  such  an  object.  They  assumed  a  static.  spherically  symmetric  
ansatz  in  which  the  Higgs  field  

,p(r)  =  h(mwr)U(r)t/Jo  (4.176)  

with  
,pO  =  (4.177) _I  (0) 

..(iv  

as  before.  m  w  =  !g2vand  

W;  =  ~ f(mwr)(a;U)U-'  (4.178) 
g2  

where  U  has  the  form  (4.140)  

U  =  ~[zh + iyrl  + ixr2]  (4.179) 
r  

and  
r  =  Irl  =  (x2  + y2  + ,?)1/2.  (4.180)  

hand  f  are  functions  to  be  determined.  The  energy  of  the  field  configuration  is  
given  by  

E  =  f d3x  [!  tr(Wij  Wij)  + iBij B;j  + (D;tP)t  (D;,p)  +  V(,p)]  (4.181)  
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where  W/l II '  B/lII  are  the  usual  field  strengths,  Dit/J  is  the  gauge  covariant  
derivative  

Dit/J  =  ait/J  + ig2  Wit/J  + iig) Bit/J  (4.182)  

and  
V(t/J)  =  }..(t/Jtt/J  - !v2)2.  (4.183)  

In  the  first  instance,  the  U (1)  fields  are  ignored,  i.e.  Ow  =  O.  Substituting  the  
ansatz  gives  the  energy  in  the  fonn  

E  =  2mw  (00  d~ F  (~, I,  I',h.  h';  mH)  (4.184)  
a2  Jo  mw  

where  ~ =  mwr,  so  that  I  and  h  are  functions  of ~ alone,  and  m~ =  2}..v2  is  the  
Higgs  mass.  The  Euler-Lagrange  equations  which  follow  from  requiring  E  to  be  
minimized  may  be  solved  approximately  or  numerically,  with  I  and  h  required  
to  approach  zero  as  ~ ~ 00.  Substituting  the  solutions  back  into  E  gives  the  
minimum  energy  in  the  fonn  

Eroin  =  2m w E  (m H)  .  (4.185)  
a2  mw  

The  scale  is  set  by  the  prefactor  

2mw  ::::::  5TeV  (4.186)  
a2  

and  the  function  e is  rather  slowly  varying:  it  increases  only  from  1.5  to  2.7  as  
m H  increases  from  zero  to  infinity,  taking  the  value  2.1  when  m H  =  2.8m  w.  In  
the  range  25  Ge V  <  m H  <  250  Ge V,  E  is  well  approximated  by  

E(x)  =  1.58  + 0.32x  - O.05x2•  (4.187)  

Allowing  Ow  ::f:  0  changes  Emin  by  about  100  GeV.  
Although  the  configuration  has  the  minimum  energy  among  those  satisfying  

the  ansatz,  it  is  nevertheless  unstable  against  perturbations  which  do  not  satisfy  
the  ansatz.  This  was  to  be  expected  too  from  the  schematic  diagram  in  figure  4.9,  
in which the top  of the potential barrier is evidently a maximum.  Because  of this  
instability,  the  configuration  was  named  a  'sphaleron',  from  the  Greek  meaning  
'ready to fall'.  The energy  of the sphaleron satisfies  

8  TeV  <  Espb  <  14  TeV  (4.188)  

and  measures  the  height  of  the  saddle  point  in  configuration  space  over  which  
the  vacuum  must  be  'pushed'  to  reach  a  topologically  distinct  vacuum.  This  
suggests  that  the  exponentially  small  tunnelling  rate  (4.174)  might  be  evaded  by  
supplying  0( I 0  Te V)  of energy, for example in a  pn  collision.  Then  some  baryon  
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number  non-conserving  transition,  such  as  (4.160),  might  be  observed.  Such  
energies  will  soon  be  available  at  the  LHC.  However,  it  is  not  just  the  potential  
barrier  which  has  to  be  sunnounted.  The  energy  scale  (4.188)  suggests  that  about  
30  weak  gauge  bosons  must  be  created  and  assembled  into  the  highly  coherent  
sphaleron  configuration,  so  that  the  process  is  highly  suppressed  by  phase-space  
considerations  unless  the  energy  is  considerably  in  excess  of  the  sphaleron  mass.  

The  other  possibility,  and  the  one  which  is  of primary  concern  to  us,  is  that,  
at  temperatures  kBT  '"  Esph,  thennal  effects  might  give  baryon  number  non­
conservation  at  an  appreciable  rate.  To  calculate  the  thennal  transition  rate  we  
must  remember  that  the  effective  potential  becomes  temperature  dependent  [44]  
and,  in  consequence,  so  does  the the   Higgs  field  expectation  value  v(T)  and,  
hence,  the  W-boson  mass  mw(T).  In  fact,  using (2.55),   since)..  in  (2.93) is!  that   
in  (2.42),  

I  CT  +  1-~2 )1/2]  
= [ ( mw(T)   (4.189)  =  "igv(T)   mw  2v'ilml  T12  

where  

= = mH 
..ti   

Iml  ,Jiv   (4.190)  

at  tree  level,  
C  =  3e3(l +  2cos38w)  (4.191)  

41rsin3Ww  
in  electroweak theory  and,   from  (2.54),  

C2T.2)-1/2  
TJ  ( =  To  1 +--% (4.192)  

4)..m  

with  To  given  by  (2.95)  

To  = Iml   [~ + e 2(l  + 2cos28w)  h~]-J/2 
2  4sin228w  +"4  (4.193)  

The  measured values  of  the   parameters give   

133  GeV  ;S  To  ;S  360  GeV  (4.194)  

with  the  lower bound  deriving  from   the  current lower  bound  [7]   

mH  ~ 114.3  GeV  at  95% CL   (4.195)  

on  the  Higgs  mass.  Then  

Tl  - TO  < 2.3   x  10-3  (4.196)  
To  ""  
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with  the  upper  bound  saturated  when  m H  achieves  its  lower  bound.  The  
temperature-dependent sphaleron  energy   satisfies  

Espb(T)  = 2mw(T)  £   (4.197)  
a2  

with  
1.9  <  t:  <  2.7  (4.198)  

and  the  associated  Boltzmann  factor  exp[-Espb(T)/T]  means  that  the  baryon­
number non-conservation   is  unsuppressed when   

T  >  Espb(T).  (4.199)  

However,  this  is  satisfied  only  when  T  is practically  at   the  critical  temperature  at  
which  the  energy  barrier disappears   in  any  case.  Careful  analytical  estimates  of  
the  baryon-number changing  rates,   valid  in  the  range  

2mw(T)  «  T  «  2mw(T)  (4.200) 
a2  

have been  made  by   Amold and  McLerran  [45].   They find   a  transition  rate  per unit   
volume  

rspb  =  K(2m W(T»4(2m W(T»)3 e-E .... (T)/T  (4.201) 
V  a2T  

where  the  numerical  factor  K  '"  11,  although  a  (non-perturbative)  numerical  
'measurement' of  the  diffusion  rate  of the Chem-Simons number over the  barrier  
[46]  suggests  that  this  may  be  too  large by  a   factor of  order 10.   

At  high  temperatures  where  T  >  TI,  the  Higgs  field  VEV  v(T)  is  zero  
and  there  is  no  sphaleron.  The gauge   fields,  however,  can  still  generate  baryon­
number non-conservation.   The energy  Eb   of such a  configuration  is  controlled  by   
the a  priori   length  scale  i  of the   configuration  which  changes the   Chem-Simons  
number Ncs.   Presumably  the  scale  of the action   is set   by  (4.173), so   

211'  
Ebi'" -.   (4.202) 

a2  

To  avoid  Boltzmann suppression,   we  require  

21r  
Eb'"  - <  T  (4.203) 

a2i  
so  

i>  21r  (4.204) 
"'a2T'  

Thus,  the transition  rate   per unit  volume  is   

rb  '" _1_   '" (a 2T)4  (4.205) 
V  i 3,  211'  
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if  we  assume  l  ,.."  t.  However,  the  scale  (4.204)  is  also  the  scale  at  which  
perturbation theory   breaks down   in  a  hot plasma  and   it  has  been  argued  [47]  that  
plasma damping  effects   increase  the  time  scale,  so  that  

l  
t-- (4.206) 

a2  

basically  because  there  are  fewer  ways  large  field  configurations  can  cross  the  
barrier than   smaller ones.   This means   that  

rb --a2 (U2T)4 - (4.207)  
V  2rr  

and indeed   a  lattice  simulation  [48]  gives  

rb  =  (29±6)a~T4. (4.208)  
V  

Numerically  there  is  no difference   between  the  two expressions.   
At  any  rate,  it  is  clear  that  there  is  no  Boltzmann  suppression  at  high  

temperatures,  so  we  do  have  a  source  of  baryon-number  non-conservation.  
Whether  or not   it  can  explain  the  observed  baryon  asymmetry  of the   universe,  
of course,   depends  upon  the  other  two  Sakharov  criteria:  the  amount  of CP­ 
violation  and  whether  the system   is  out of  thennal   equlibrium.  The  picture  we  
have  in  mind  is  that,  in  some  region  of space,   there  is  a  non-trivial  gauge  and  
Higgs  field  configuration, of  the   type  we  have  discussed,  which  leads  to  the  non­
conservation of baryon number.  To generate a baryon asymmetry we require CP­
violating  interactions  involving  the  quark  fields.  Then  the  transition  rate  for the   
sphaleron-induced process  with   llNcs  =  + I  will  differ (slightly)  from   that  with  
llNc s  = -I.  Provided  that  the  system  is   not in   thennal equilibrium,  there  is   then  
the  possibility of  a   net non-zero  baryon-number  asymmetry.   

4.9  CP-violation in   electroweak  theory  

In  electroweak  theory  the  sole  source  of  CP-violation  is  via  the  Cabibbo­
Kobayashi-Maskawa (CKM)  matrix, which  derives  a  CP-violating  phase  from  the   
unremovable phases   in  the  Yukawa interactions  of  the   quarks when   we  transfonn  
to  the  mass  eigenstates.  The fonn  of  these   interactions  is  

£y  = q/iiRhDQL   +  Y,tURhUQL  +h.c.  (4.209)  

where  QL  is  the  quark  doublet  and  UR,  dR  the  singlets,  tP  is  the  Higgs  scalar  
doublet and   y,  =  i1"2tP*.  As in   equation (4.70),  hu   and  ho are   complex  matrices  
acting on   the  undisplayed generation  indices  of  QL.   UR.  dR.  Also. as   in  equation  
(4.78), we   need to   construct a  diagram  with  non-vanishing  imaginary  parts  in   both  
the  loop  integral  and the   trace  over generation  indices.   It  is  easy  to  see  that (4.81)   
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does not  derive  from  a  diagram  allowed  by  the  vertices  in  (4.209).   In  fact,  the  first  
contribution arises  at  the   12th order  in   perturbation theory,   from  the  trace  

T12  = tr(h~huh~huh1hoh 1hoh~huh1ho) +  h.c.  (4.210)  

Again  we  may  diagonaiize  hu  and  ho  as  in  (4.82),  (4.83),  (4.84)  and  (4.85).  
Then  [49,50],  

g12  
T12  = ~tr(lmuI4VlmoI4VtlmuI2VlmoI2Vt)  (4.211)  

64mw  

where  
v =  QS t  (4.212)  

is  the  CKM  matrix  and  

Imu 14   =  diag(m:, m!,  m!)   (4.213)  

and  similarly for  Imol4,   Imul2  and  Imol2.  Then  

12  
ImTI2=  g2 12  L  (mt)i(m~)j(m~)k(m~),Im[VijVIeIVi;Vlj]. (4.214)  

64mw  't), '  'lel  ,  

Now  
Im[Vij Vlel   Vi; Vlj]   = J  L E;1cpE  jlq  (4.215)  

p,q  

where  J  is  the  Jarlskog  invariant  [49].  In  the  standard  CKM  and  Particle  Data  
Group parametrizations  respectively,  it  is   given by   

J  = sin 29)  sin 9:2   sin 9]  cos  8)  cos 9:2  cos 9]  sin  15   

=  sin9)2  sin 813   sin 9:23   cos 9)2  cos  91 3 cos  9:23   sin 813.   (4.216)  

Then  

12  
Im T\2   =  g2  12  J(m; - m~)(m~ - m~)(m~ - m;)(m~ - m;) 

64mw  

x  (m; - m~)(m~ - m~) 
12  

'" - --.-2 g2  4  4  2  2 Jm,mbmcms·  (4.217)  
64mw  

So we   expect the   scale  of CP-violation   in  the  standard 

r 
 model  to  be  controlled  by  

the parameter   

a,m  ~ A  (;;)6 J   (m1't'",  (4.218) 
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With  A  ....  UP  perhaps  to  allow  for  the  large  numberof  Feynman  diagrams,  we  
still  have  

8sm  :s  10-25  (4.219)  

using  the  current  data  [7].  This  tiny  number  scales  the  difference  in  free  energies  
and,  hence,  the  difference  between  the  rates  of  the  fl.Ncs  =  ±I  processes.  
By  itself.  it  is  sufficient  to  exclude  the  possibility  of  explaining  the  observed  
baryon  number  asymmetry  of  the  universe  in  the  context  of  the  standard  model  
electroweak  theory.  so  extra  sources  of  CP-violation  are  clearly  needed.  Such  
sources  arise  naturally  in  the  supersymmetric  version  of  the  theory  which  we  
shall  discuss  shortly.  Before  doing  so,  however,  we  shall  see  that  there  are  further  
reasons  why  the  standard  model  electroweak  theory  cannot  yield  the  measured  
asymmetry.  

4.10  Phase transitions  and  electroweak  baryogenesis   

We  have  seen  that  electroweak  theory  possesses  (sphaleron-induced)  baryon­
number  non-conserving  processes.  as  well  as  CP-violation  via  the  CKM  matrix.  
However,  there  is  a  rather  general  argument  that  these  cannot  generate  the  baryon  
asymmetry  of  the  universe  in  the  absence  of  a  phase  transition  or  if  the  phase  
transition  is  second  order  [51].  

Suppose  the  latter  and  consider  the  universe  at  temperature  T  satisfying  

mw  <  T  <  Tc  (4.220)  

with  Tc  the  critical  temperature  of  the  phase  transition.  For  a  second-order  phase  

transition  (  2 )  I  /2  

mw(T)  =  mw  1 - ~c2 (4.221)  

We  can  see  this  from  (4.189)  by  setting  C  to  zero.  Then  v(T)  and.  hence,  m w(T),  
approach  zero  continuously  as  T  approaches  Tc  from  below;  also,  when  C  =  0,  
To  =  TI  =  Tc.  As  in  the  case  of  GUT  baryogenesis  (4.37).  we  now  require  
that  the  rate  r  sph  of baryon-number  non-conserving  processes  is  smaller  than  the  
(Hubble)  rate  H(T)  associated  with  the  expansion  of  the  universe,  so  that  the  
baryons  are  decoupled  from  the  thermal  bath.  The  total  sphaleron  rate  r  s~h is  
obtained  by  scaling  the  rate  per  unit  volume  r  sphl  V,  given  in  (4.201),  with  R  (I),  
where  R(t)  is  the  scale  factor.  proportional  to  T- 1  in  the  radiation-dominated  era.  
Thus,  roughly,  

ESPh(T)] rsph  ....  kTexp  [  - T  (4.222)  

where  Esph(T)  is  given  in  (4.197).  With  H  (T)  given  by  (4.21),  decoupling  only  
happens  when  the  temperature  T  drops  below  T*  with  

2]-1/2 T*  Tc  a2  mp 
[  (4.223) - ~ 1 + (--In-) 

Tc  mw  2£  T*  
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This gives   
T*  

0.71  < ­ <  0.88  (4.224)  
Tc  

corresponding to   the  bounds (4.194).   Thus the  sphaleron-induced  baryon-number   
non-conserving  processes  with  which  we  are  concerned  are  not decoupled   until  
the  temperature  is  well  below  Tc  but  still  well  above  mw  [51]  and.  at  these  
temperatures. the  exponential  suppression  essentially turns  off  the baryon-number   
production.  At  the  higher  temperatures  where  the  Boltzmann  suppression  is  
evaded.  the rate   exceeds  the  universal  expansion  rate  and  the  resulting  thennal  
equilibrium  washes  out  any  baryon  asymmetry.  So  the  picture  we  have  is  as  
follows:  As  the  temperature  drops  below  Tc,  the  symmetry  breaks  and  the  field  
t/I  develops  a  non-zero  YEY  at  the  minimum  of the   potential,  as  in  figure  2.1.  
At  each  point in   space  thennal  fluctuations  perturb  the  field  t/I  which  then  'rolls'  
classically  to  the  new  value  at  the  global  minimum.  If this   phase  transition  is  
second  order  or  a  continuous  crossover,  the  slow  rolling  to  the  new  minimum  
means  that  the  departure  from  thermal  equilibrium  is  too  small  until  T  drops  
below  T*  but  by  then  the  sphaleron-induced baryon   production  has  been  turned  
off by   the  Boltzmann exponential  suppression.   

Thus,  the  only  possibility  is  that  the  phase  transition  is  first  order.  In  this  
case,  as  discussed  in  section  2.9,  for  temperatures  T  >  Tit  the  only minimum  
of  Veff  is  with  the  system  in  the  symmetric.  unbroken  phase  characterized  by  
zero  YEY.  As  the  temperature  falls  below  Tt,  a  local  minimum  of Veff   develops,  
separated  by  a  potential  barrier  from  that  at  zero  VEY,  and  below  the  critical  
temperature  (T  <  Td  this  broken  phase  becomes  the  global  minimum,  see  
figure  2.2.  Nucleation  of the   broken  phase  proceeds by   the  formation  of bubbles   
of  this  true  vacuum  in  the  sea  of false   (symmetric  phase)  vacuum.  At  some  
supercooled temperature   below  Tc,  the  size  of the  bubbles becomes  large  enough   
for them  to   overcome the   surface tension   effects and   they expand  to   fill  the  whole  
of space   and  complete  the  phase  transition.  Finally.  for  temperatures  below  To,  
the  local  minimum at   zero VEY  disappears  and  only  the   broken  phase is   stable.  

A  baryon  asymmetry  may  be  generated  as  the  wall  of an   expanding  bubble  
passes  through  a  region  containing  particles  in  the  unbroken  phase.  The  Higgs  
field  changes  rapidly  because  of the   wall  motion.  as  do  other  fields.  and  these  
interact with   the  particles giving  concentrations  quite   far from   eqUilibrium.  If the  
baryon-number  non-conserving  processes  and  the  CP-violating  processes  both  
occur  in  or  near  the  wall,  a  net  non-zero  baryon  asymmetry  can  result:  this  
scenario  is  called  local  baryogenesis  [52, 53].   After  the  wall  has  passed  the  
region  we  are  discussing  is  in  the  true  (broken  phase)  vacuum  with  v(T)  #- 0,  
so  it  is  important that,   in  this  phase,  the  sphaleron-induced. baryon-number  non­ 
conserving  processes  are  turned  off by   the  Boltzmann  suppression.  so  that  any  
baryon  asymmetry  produced  during  the  non-equilibrium  era  is  frozen  in.  The  
condition for   this  to  happen  is  [50]  

v(Tc)  > I   (4.225) T  ""  •  
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This  is  called  the  'sphaleron  washout  condition'.  In  non-local  baryogenesis,  CP­
violating  interactions  of the  particles  with  the  bubble  wall  produce  an  asymmetry  
in  a  quantum  number  other  than  the  baryon  number  and  the  resulting  particles  
carry  this  asymmetry  into  the  unbroken  phase,  away  from  the  wall.  Then  baryon­
number  non-conserving  effects  convert  this  asymmetry  into  a  baryon  asymmetry,  
(some  of)  which  is  frozen  in  the  broken  phase  after  the  bubble  wall  has  passed.  
If the  speed  of  the  wall  is  greater  than  the  sound  speed  in  the  plasma,  the  former  
process  dominates  [54];  otherwise  the  latter  does  but,  in  general,  both  may  occur  
and  the  total  baryon asymmetry is the  sum  of that generated by  the  two  processes.  

We  have  already  noted  that  the  phase  transition  is  (weakly)  first  order  in  
electroweak  theory  and  that  at  the  phase  transition  (2.61)  gives  

2CTe 
t/le  =  veT!,)  =  -n  (4.226)  

so  
v(Te)  =  2C  <  0  17  (4.227) 

Te  3>..  '"  •  
which  does  not  satisfy  (4.225).  In  fact,  requiring  that  (4.225)  is  satisfied  would  
require  

mH;S  47  GeV  (4.228)  

in  clear  contradiction  to  the  current  lower  bound  (4.195).  
The  perturbative  calculations  of  the  corrections  to  the  effective  potential  are  

not  a  priori  reliable, because  of the so called  'infrared problem'  that afflicts  finite­
temperature  field  theory  [55,56].  It  derives  from  the  existence  of  an  expansion  
parameter of the  form  

g2  g2T  
E"  =  2  ~ _2_  when  m  «  T  (4.229) 

m  

where  m  is  some  bosonic  mass  appearing  in  the  propagators.  Then  light  modes,  
those  with  m  «  g~T, interacting  with  the  Higgs  are  a  problem  that  should  be  
treated  non-perturbatively.  The  direct  method  of carrying  out  a  four-dimensional  
finite  temperature  lattice  simulation  is  difficult  because  the  weak  coupling  entails  
the existence  of multiple length scales which are difficult to  fit  simultaneously on  
a  finite  lattice.  Also.  in  practice,  chiral  fermions  cannot  be  handled  efficiently.  
However,  all  of  these  problems  can  be  overcome  by  using  a  finite-temperature  
effective  field  theory  [57-59],  obtained  by  integrating  out  (perturbatively)  all  non­
zero  Matsubara  modes,  which  includes,  in  particular,  all  fermions.  The  resulting  
effective  theory  is  then  three-dimensional  and  involves  only  the  surviving  infrared  
modes,  the  Higgs and  the  spatial components  of the  S U  (2)  and  U (I)  gauge  fields.  
This  theory  is  ideally  suited  for  lattice  simulations.  It  is  found  that,  in  the  m H­

TI'  plane,  there  is  a  line  of  first-order  phase  transitions  that  end  at  a  critical  point  
after  which  there  is  only  a  crossover  transition.  The  endpoint  is  known  to  high  
precision  and  is  at  

mH,e  = 72.3  GeV  Te  =  109.2  GeV.  (4.230)  
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Further,  the  condition  (4.225)  is  satisfied  only  for  

mH  ~ 10  GeV.  (4.231)  

Thus,  the  more  accurate  calculation  of  the  phase  transition  shows  that  the  
current  bound  (4.195)  is  far  from  allowing  a  first-order  phase  transition,  let  alone  
baryogenesis.  

This  analysis  also  indicates  how  the  situation  might  be  improved.  The  
strength  of  the  phase  transition,  as  measured  by  v(Tc)/Tc,  can  be  increased  by  
substantially  decreasing  the  effective  (three-dimensional)  scalar  self-coupling  13,  
as  is  suggested  by  (4.227).  This  requires  a  new.  non-perturbative  degree  of  
freedom  and  this  happens  when  there  are  extra  scalar  degrees  of  freedom,  as  
occurs  naturally  in  the  supersymmetric  version  of  electroweak  theory  to  which  
we  now  tum.  

In  summary,  the  standard  model  electroweak  theory  does  not  explain  the  
observed  baryon  asymmetry  for  two  reasons:  (i)  because  there  is  insufficient  CP­
violation;  and  (ii)  because  the  phase  transition  is  too  weakly  first  order  (in  the  
sense  described  earlier)  to  suppress  the  erasure  of any  baryon  number  asymmetry  
produced  in  the  symmetric  phase.  

4.11  Supersymmetric  electroweak  baryogenesis  

We  have  already  noted  that  the  extra  matter  contained  in  the  minimal  
supersymmetric  standard  model  (MSSM)  might  allow  the  alleviation  of  
the  problematic  features  of  the  non-supersymmetric  theory  that  preclude  
baryogenesis  at  the  level  observed  in  nature.  Supersymmetry  entails  the  existence  
of  new  fermions.  In  particular.  there  are  charginos  and  neutraiinos,  mass  
eigenstates  that  are  generically  superpositions  of  the  charged  or  neutral  weak  
gauginos  and  Higgsinos.  There  are  also  new bosons  and  we  shall  be  specifically  
concerned  with  top  squarks.  Diagonalization  of  the  mass  matrices  of  all  of  these  
states  generally  leads  to  new  sources  of  CP-violation.  As  we  shall  see,  it  is  the  
existence  of  new  particles  (and  thereby  of  new  sources  of  CP-violation),  rather  
than  the  supersymmetry  itself,  that  might  allow  the  MSSM  to explain  the  observed  
baryon  asymmetry.  

Now  consider  an  expanding  bubble  of  the  broken  phase,  with  the  bubble  
wall  propagating  through  the  hot  plasma  into  the  symmetric  phase,  perturbing  
the  (quasi-)particle  distributions  from  eqUilibrium.  Inside  the  bubble,  baryon­
number  non-conservation  is  small,  because  of  exponential  suppression  by  the  
sphaleron's  Boltzmann  factor,  provided  that  the  sphaleron  washout  condition  
(4.225)  is  satisfied.  Effectively,  baryon  number  is  conserved  inside  the  bubble.  
However,  outside  the  bubble.  anomalous  baryon-number  non-conservation  is  
rapid.  One  way  to  see  how  baryogenesis  occurs  [60]  is  to  think  of  the  wall  of  
the  expanding  bubble  feeling  a  'wind'  of particles  in  the  symmetric  phase.  These  
particles  may  pass  through  the  wall  into  the  broken  phase  or  be  reflected  back  
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into  the  symmetric  phase  region.  The  latter  will  interact  and  be  slowed  by  other  
particles  approaching  the  wall.  before  eventually  passing  through  the  wall.  Thus.  
an accumulation  of particles develops  in front of the bubble wall.  As a result  of the  
CP  violation.  there  is  a  non-zero  difference  between  the  transmission  coefficients  
of these  particles and their antiparticles across the wall  of the bubble and a similar  
difference  between  the  reflection  coefficients.  These  differences.  in  turn,  generate  
local  source  tenns  for  the  net  number  densities  associated  with  the  particles  
and.  in  particular.  the  Higgs  number  and  axial  top  number.  which  appear  in  the  
coupled  Boltzmann  equations,  tending  to  pull  the  system  away  from  eqUilibrium.  
These  particles  are  chosen  because  they  participate  in  particle-number-changing  
transitions  in  the  wall  that  are  fast  compared  with  relevant  time  scales  but  they  
carry  charges  that  are  approximately  conserved  in  the  symmetric  phase.  Transport  
effects  then  generate  a  local  excess  (or  deficit)  of  left-chiral  charginos  (say)  over  
their  antiparticles  ahead  of  the  advancing  bubble  wall.  Unsuppressed  baryon­
number  non-conservation  in  the  symmetric  phase  then  converts  these  densities  
into  a  net  baryon  asymmetry,  which  is  frozen  as  the  bubble  wall  sweeps  through,  
provided  that  the  sphaleron  washout  condition  is  satisfied.  

All  calculations  [60-64],  of  nB  in  the  symmetric  phase  are  done  using  
coupled  diffusion  equations  for  the  relevant  number  densities.  which  include  
contributions  arising  from  source  currents  generated  at  the  bubble  wall.  scattering  
processes  involving  the  top  quark  Yukawa  coupling,  as  well  as  Higgs-number  and  
axial-top-number-violatingprocesses  in  the  bubble  wall  and  broken  phase.  Higgs­
number  and  quark-number  diffusion  tenns  are  also  included.  There  is  general  
agreement  on  the  equations  to  be  used  (see  (4.232»  but  little  on  how  to  detennine  
the  source  currents.  

We  have  also  noted  that  the  MSSM  affords  new  mechanisms  for  satisfying  
the  washout  condition  (4.225)  that  are  unavailable  to  the  standard  model.  
Specifically.  the  possible  existence  ofa  light  SU(2)  scalar  top  squark  iR  (a  'stop')  
that  interacts  strongly  with  the  Higgs  field  might  drive  the  necessary  reduction  
in  the  effective  three-dimensional  scalar  self-coupling  )..3  needed  to  generate  a  
sufficiently  strong  first-order  phase  transition  with  a  Higgs  mass  satisfying  the  
current  bounds  [65].  Any  such  scalar  gives  a  negative  contribution  to  A,3  at  
one-loop  level  but  a  light  left  stop  h  is  inconsistent  with  electroweak  precision  
measurements.  Numerical  calculations  [65]  have  confinned  two-loop  estimates  
and  shown  that  these  are  even  somewhat  conservative.  The  conclusion  is  that  there  
are  parts  of  the  MSSM  parameter  space  not  excluded  by  experiment  where  the  
electroweak  phase  transition  is  strong  enough  to  allow  baryogenesis.  However,  
besides  needing  a  light  stop  m;R  $  m"  there  must  either  be  a  much  heavier  stop  
mh  ~ 10m,  or  else  two  independent  light  Higgs  particles  mh.A  $  120  GeV.  (h  is  
the  scalar  Higgs  and  A  the  pseudoscalar.)  

The  next  question  then  is  whether  in  this  region  of  parameter  space  the  
additional  sources  of  CP-violation  in  the  MSSM  can  generate  source  tenns  for  
the  various  particle  densities  that  are  strong  enough  to  induce  sufficient  baryon  
asymmetry  in  the  symmetric  phase.  which  is  then  frozen  in  as  the  bubble  wall  
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passes through.  The most direct method  of baryogenesis WOUld, of course,  be  to  
use  the  left-chiral  quarks  themselves,  since  any  CP-violating  contributions  to  their  
distributions  would  directly  bias  the  sphaleron  interactions  and  thereby  generate  
a  baryon  asymmetry.  However,  in  the  MSSM  (but  not  in  all  two-Higgs  doublet  
models)  the  Higgs  potential  is  real  at  tree  level  and  CP-violating  contributions  
to  quark  masses  arise  only  at  one-loop  order.  Moreover,  such  contributions  are  
potentially  suppressed  by  the  GIM  mechanism,  as  in  the  standard  model.  We  are,  
therefore,  forced  to  consider  CP-violating  perturbations  in  other  particle  densities.  
Specifically,  we  consider  squarks,  which  couple  to  quarks  strongly  via  the  strong  
supergauge  interactions,  and  charginos,  which  couple  strongly  to  third-generation  
quarks  via  Yukawa  interactions.  Neutralinos  also  contribute  but  their  coupling  to  
fennions  is  weaker than  that  of the  charginos,  so  the  transport  of any  asymmetry  to  
the  quark  sector  is  much  less  efficient  and  we  neglect  them.  The  coupled  diffusion  
equations  that  control  the  densities  with  CP-violating  sources  have  the  general  
form  ,  ,  

D;~i +  vW~i +  r;(~i +  ~j + ... )  =  S;  (4.232)  

where  ~j ==  I-£;/T  with  1-£;  the  chemical  potential  of  the  ith  species,  Dj  is  a  
diffusion  constant,  Vw  is  the  velocity  of  the  bubble  wall,  r;  is  the  inelastic  rate  
converting  species  i  into  other  species  j, ... ,  and  S;  is  the  CP-violating  source  
term  created  at  the  bubble  wall;  the  prime  denotes  differentiation  with  respect  
to  the  z-direction  in  which  the  bubble  wall  propagates.  Different  approaches  
have  been  proposed  for  calculating  the  source  terms  [31,63,66],  and  it  is  unclear  
whether  they  agree.  We  shall  use  the  classical  force  method  [63,64,67,68],  in  
which  the  particles  move  in  the  plasma  under  the  influence  of  a  classical  force  
exerted  on  them  by  the  spatially  varying  Higgs  field.  Because  of  CP-violation,  
particles  and  antiparticles  experience  (slightly)  different  forces.  The  source  terms  
in  the  diffusion  equations  are  proportional  to  the  thermal  average  of  this  CP­
violating component  of the  force.  

For  illustrative  purposes,  we  shall  follow  the  treatment  of  Cline  et  al  [69].  
The  set  of  coupled  diffusion  equations  can  be  simplified  considerably  by  taking  
account  of  the  hierarchy  of  inelastic  reaction  rates  rj  that  change  the  particle  
species  i  into  other  species  j,  ....  The  electroweak  sphaleron  rate  rb,  of  order  
a~T (see  (4.20S»,  is  the  slowest  and  can  be  ignored  until  we  are  ready  to  compute  
the  actual  baryon  asymmetry.  In  contrast,  the  various  gauge  interaction  rates,  of  
order  aa  T,  are  fast  and  can  be  taken  to  be  in  equilibrium  on  the  time  scale  for  
particles  to  diffuse  in  front  of the  bubble  wall:  

Dj  
aa T »  ~ .  (4.233)  

w  

Then,  in  particular,  the  chemical  potentials  of  the  weak  bosons  are  zero,  so  the  
chemical  potentials  of quarks in  the  same  doublet are  equal:  

~'L = ~bL ==  ~q3· (4.234)  
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Similarly,  the  assumption  that  supergauge  interactions  are  in  equilibrium  implies  
that  

~p =~p (4.235)  

for  any  particle  p  and  associated  sparticle  p.  Intermediate  between  these  
interaction  rates  are  those  of  various  inelastic  processes,  including  those  
associated  with  the  interaction  Lagrangian  and  'strong  sphaleron'  processes.  We  
shall  see  in  the  following  chapter  that.  although  baryon  number  is  conserved  by  
QCD,  the  axial  baryon-number  current  

J~5) ==  LtlYIlYSq  (4.236)  
q  

is  anomalous  and  there  are  strong  sphaleron  solutions,  analogous  to  the  
electroweak  sphalerons,  that  connect  different  topological  sectors.  Their  
contribution  to  the  coupled  diffusion  equations  conveys  the  CP-violation  to  
all  quark  flavours.  The  rate  rss  of  such  processes  is  of  order  a~T and  
comparable  with  those  arising  from  the  top  Yukawa  coupling,  so  they  must  be  
included.  Although  neither  of  the  foregoing  assumptions  is  a  particularly  good  
approximation,  it  is  believed.  or  at  least  hoped.  that  they  lead  to  multiplicative  
errors of at most  of order unity  in the predicted baryon asymmetry.  

In  the  analysis  of  [69],  the  sources  Si  of  the  CP-violating  asymmetry  arise  
solely  from  the  chargino  sector.  The  squark  sector  is  ineffective  because,  for  
bosons,  the  CP-violating  source  arises  only  at  second  order  in  the  gradient  
expansion of the CP-violating mass.  Charginos are mass eigenstates arising from  
Higgsino-Wino  mixing.  However,  any  asymmetry  from  the  Wino  component  
can  only  be  transported  to  a  chiral  asymmetry  in  quarks  and  squarks  via  mixing  
effects,  whereas  a  Higgsino asymmetry  is  transported  directly  via  strong  Yukawa  
interactions.  Thus,  the  set  of  diffusion  equations  to  be  considered  can  be  
simplified  by  neglecting  chargino  mixing  and  dropping  any  Wino  contributions.  
With  the  foregoing  approximations,  the  number  of  coupled  diffusion  equations  
is  reduced  to  those  for  the  two  Higgsino  densities  ~i,1 and  ~i,2' which  have  CP­
violating  sources  Si,1  and  Si,2'  plus  those  for  the  third  quark  generation  doublet  
~q3 and  the  right-chiral  top  ~'R' and  those  for  first- and  second-generation  doublets  
~ql.2 and  right-chiral  singlets  ~qR' which  are  coupled  to  the  first  four  equations  
only  by  strong-sphaleron  interactions.  The  equations  may  be  solved  numerically  
and  the  last  step  is  to  calculate  the  baryon  asymmetry  induced  by  weak  sphaleron  
effects  on  the  CP-violating  asymmetries  ~i. 

Since  the  weak  sphaleron  derives  entirely  from  the  SU(2)L  component  of  
the  electroweak  gauge  group,  the  baryon  asymmetry  results  from  left-chiral  quark  
and  lepton  asymmetries  in  front  of the  bubble  wall.  The  latter  are  essentially  zero  
in  this  approach  and  the  former  enter  the  baryon-number-violating  rate  equation  

dnB  3  (  nB)  (4.237) Tt  =  2rb  ~qL - AT2  
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via  
~qL ==  3(~ql +~92 +~qJ) (4.238)  

because  each  doublet  occurs  in  three  colours.  Here  rb  is  the  weak-sphaleron  
baryon-number  non-conserving  rate  (4.205)  or  (4.208).  The  second  term  on  the  
right-hand  side  is  the  Boltzmann  term  by  which  the  baryon  number  would  relax  
to  zero  if  the  sphaleron  processes  had  time  to  equilibriate  in  front  of  the  bubble  
wall.  The  n B  here  is.  therefore.  related  to  the  quark  and  lepton  asymmetries.  ILq  
and  ILL.  that  result  from  equilibriating  all  ftavour-changing  interactions  that  are  
faster  than  the  sphaleron  rate  rb  in  the  symmetric  phase.  Thus.  A  is  given  by  

nB  ~ 
A  T2  = 9ILq  +  ~ ILt  (4.239)  

l  

since  each  sphaleron  creates  nine  quarks  and  three  leptons.  All  quarks  have  the  
same  chemical  potential.  because  of efficient  mixing,  but  lepton  mixing  might  be  
weak.  The  calculation  of  these  chemical  potentials  depends  on  which  interactions  
equilibriate  on  the  relevant  tiroescale.  The  asymmetry  n,4  for  any  particle  species  
a  is  given  by  

lLa T2  
n,4  ==  na  - njj  = lCa-6- (4.240)  

where  lCa  =  I.  2.  respectively,  when  a  is  a  fermion  or  hoson.  In  eIectroweak  
baryogenesis.  the  relevant  time  scale  is  r; 1  and.  on  this  scale.  both  chiralities  of  
all  six  quark  flavours  in  three  colours  do  equilibriate  and  we  include  a  number  
Nsq  of  light  squarks.  Thus.  from  the  quarks  and  squarks.  we  have  

)  ~ 2  
nB  =  '3(nQ  +nsQ)  =  18[6  x  3  x  2+2  x  3Nsq JT  (4.241)  

so  that  
-1 

nB  (  
IV. sq  )ILq=- 1+- (4.242) 

2T2  6  

Similarly.  since  only  the  left-chiralleptons equilibriate.   but  not  the  right,  

nl  = lILlT2   (4.243)  

and  
~ 
~ ILL  = ~ nt  nB  

3 ~ (4.244) T2  = 3 T2 .  
l  l  

Thus.  

9 (  N  A  =  2  1 +  ~q )-1 +3.  (4.245)  

The  solution  of (4.237)   is  found  by  transforming  to  the  wall  frame  in  which  
at  - -VII/az.  Then  

- 3rsp 1000  -bz h  dZ~qLe (4.246) nB  - 2vw  0  
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where  
_  3Arsph  

b=--3' (4.247) 
2vw T  

Consequently,  the  quark  asymmetry  ~qL '  found  from  solving  the  coupled  diffusion  
equations  in  terms  of  the  Higgsino  sources  Sii)  (z)  and  Sii2  (z),  determines  the  
baryon  asymmetry  n B  and,  hence,  the  baryon-to-photon  and  baryon-to-entropy  
ratios  TlB  ==  nB/ny  ~ 7nB/s.  

The  conclusion  is  that  the  MSSM  can  explain  the  observed  value  (4.18)  but  
several  independent  parameters  must  be  optimally  tuned  to  do  so.  First,  the  CP­
violating  phase  in  the  chargino  mass  matrix  must  be  close  to  maximal.  In  order  
to  accommodate  experimental  data  on  electric  dipole  moments,  especially  that  
of  mercury,  this  requires  that  the  lower  generation  squarks must  have  masses  of  
order  10  TeV.  Actually  this  is  necessary  to  maximize  the  chiral  quark  asymmetry.  
Also  mh  '"  10  TeV  is  required  to  give  sufficiently  large  radiative  corrections  to  
mho  given  the  already  noted  need  for  a  light  tR  (miR  ;S  mt)  to  satisfy  the  washout  
condition.  In  addition,  tan  fJ  ==  Vu/Vd  ;S  3  is  required,  the  wall  velocity  Vw  must  
be  close  to  its  optimal  value  of 0.02  and  the  walls  should  be  as  thin  as  they  can  be  
for  the  validity  of  the  classical  force  method,  about  6fT.  (V",d  are,  respectively,  
the  VEVs  of  the  (two)  Higgs  doublets  hi  in  (4.59),  used  to  give  masses  to  the  
uplike  quarks,  and  h2  in  (4.60),  used  to  give  masses  to  the  downlike  quarks.)  
Similar  conclusions  have  been  reached  by  Huber  and  Schmidt  [70].  

Although  the  MSSM  can  explain  the  observed  baryon  asymmetry,  it  is  
evidently  not  generic.  The  region  of  parameter  space  in  which  it  does  so  is  
very  constrained.  and  might  well  be  excluded  by  future  experiments  that  set  
new  bounds  on  sparticle  masses,  for  example.  We  therefore  comment  briefly  on  
alternatives  that  have  been  proposed  but  which,  however,  have  not  been  as  fully  
studied  as  the  other  methods  we  have  described.  

4.12  Ameck-Dine baryogenesis   

The  discussion  of  baryogenesis  in  the  previous  section  made  hardly  any  use  
of  the  super symmetry  of  the  MSSM.  Rather,  the  MSSM  supplied  new  fields  
that  strengthened  the  first-order  phase  transition  and  which  also  developed  the  
chiral  asymmetries  that  were  subsequently  converted  to  a  baryon  asymmetry.  
In  contrast,  the  Affleck-Dine  mechanism  [71]  uses  a  generic  feature  of  any  
supersynunetric  theory,  namely  the  existence  of  'flat'  directions,  to  generate  
a  large  VEV  for  a  field  carrying  non-zero  B  - L  in  the  early  universe;  at  
temperatures  higher  than  the  electroweak  phase  transition,  we  have  already  
noted  that  weak  sphaleron  processes  are  in  equilibrium,  so  that  any  B  +  L  
asymmetry  is  erased.  In  fact,  perturbative  baryon-number  conservation  in  the  
MSSM  is  achieved  by  imposing  a  discrete  R-synunetry  that  has  the  effect  of  
excluding  certain  dimension-four  operators  from  the  superpotential  that  would  
otherwise  explicitly  generate  baryon-number  non-conservation,  see  [11]  for  
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example.  Even  so,  there  remains  the  possibility  of  dimension-five,  and  higher,  
non-renormalizable  operators,  whose  effects  are  suppressed  by  at  least  one  
power  of  a  (hopefully)  superbeavy  scale  M,  e.g.  the  Planck  mass  mp.  The  
alternative  approach  to  baryogenesis,  proposed  by  Affleck-Dine  utilizes  both  of  
these  features.  

First,  recall  that  in  a  supersymmetric  theory  there  are  scalar  fields  with  
non-zero  baryon  or  lepton  number.  Before  supersymmetry  breaking,  there  are  
generally  many  (D- and  F-)  flat  directions.  These  are  directions  (in  field  
configuration  space)  along  which  the  potential  is  a  constant  (i.e.  'flat').  These  
include  directions  that  allow  gauge  invariant  combinations  of  squark  and/or  
slepton  fields  to  develop  non-zero  VEVs.  For  example  [72],  the  MSSM  
superpotential  (see  [11])  

W=~Q~~+~Q~'+~L~~ (4.248)  

has  an  F -flat  direction  parametrized  by  the  complex  field  q,  as  follows:  

Qi=(~) L\  = (  ~ )  di  = q,  (4.249)  

with  all  other  fields  zero;  subscripts  label  the  generations,  and  superscripts  are  
colour  labels.  The  auxiliary  F-terms  (F4I  ;;:  aw/a<l>,  as  in  section  2.7)  of  all  
chiral  superfields  <I>  vanish  in  this  direction,  and  the  fact  that  q,  is  complex  shows  
that  there  is  global  U  (  1)  symmetry  associated  with  it.  This  direction  is  also  D­
flat.  In  other  words,  the  D-terms  (D"  ;;:  L~ <l>ttQ<I>,  as  in  section  2.7)  for  all  
three  gauge  groups  also  vanish.  It  follows  that  the  scalar  potential  

(4.250) v  =!  LgfDfvr  + L  F';F~ 
~ 

is  zero  and,  therefore,  flat  in  this  direction  (the  summed  index  a  runs  over  the  
adjoint  representation  of  the  corresponding  group.)  Thus,  the  scalar  particle  
associated  with  the  field  t/J  is  massless.  Fields  such  as  this,  associated  with  flat  
directions,  are  called  'moduli'  fields  and  the  massless  particles  associated  with  
them  raise  cosmological  questions  that  we  shall  discuss  later.  In  our  example,  the  
combination  of non-zero  fields  associated  with  the  flat  direction  

x  =  QiLI~·/I (4.251)  

is  gauge  invariant  and  has  B  - L  =  -1.  In  general,  the  gauge-invariant  
combination  X  is  proportional  to  a  power  of  the  field  parametrizing  the  flat  
direction:  

X  ex  q,m  (4.252)  

In  our  example,  m  =  3.  As  detailed  later,  various  effects  lift  the  flatness  and  may  
allow  q,  to  develop  a  VEV.  If  these  VEVs  are  large,  the  subsequent  evolution  of  
the  universe  can  develop  a  substantial  baryon  asymmetry.  
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To  see  how,  recall  that  the  superpotential  W  is  expected  to  have  higher-order,  
non-renonnalizable  tenns.  These  must  be  gauge  and  R-parity  invariant.  Thus.  
focusing  on  a  single  flat  direction.  in  general  

J..  le  J..  n 
Wor  =  --x  =  --,p  (4.253) nMn-3  nM,,-3  

where  n  = mk;  k  is  even  if  X  has  odd  R-parity,  as  in  the  previous  example,  and  M  
is  some  large  mass.  This  gives  F  -tenns  that  are  non-zero  in  the  specifed  direction.  
Note,  however,  that  although  the  superpotential  Wor  does  not  conserve  U ( 1 )  B - L.  

the  scalar  potential  V  derived  from  it  does:  

v.  =  ~ 1.1.1 211- 2  (4.254) or  M2n-6  'I"  

since  it  is  proportional  to  (r/J*,p)Iat-I.  
We  shall  see  later,  in  chapter  7,  that  there  is  good  reason  for  believing  that  

in  the  early  universe  there  was  a  period  of  'inflation',  during  which  the  Hubble  
constant  H  was  approximately constant.  The  second,  and  most  important,  point  
is  that  global  supersymmetry  is  necessarily  broken  during  inflation.  Since  the  
vacuum  energy  

(V)  =  8~H2m~ (4.255)  

is  non-zero,  there  must  be  non-zero  F  and/or  D  components  for  some  matter  
fields.  and  a  soft  potential  develops.  This  includes  a  mass  tenn  for  the  (erstwhile  
massless)  moduli  field  lp,  of  order  H.  the  (instantaneous)  Hubble  constant  [72].  
In  fact.  H  - 1013- 15  GeV  during  inflation,  as  can  be  seen  from  (7.41)  with  
V(,p)  given  by  (7.115)  in  order  to  explain  the  observed  cosmic  microwave  
background.  A  mass  tenn  too  conserves  B  - L.  The  supersymmetry  breaking  
also  induces  (soft)  A-tenns  in  the  scalar  potential.  These  have  the  same  fonn  as  
the  superpotential  W.  so,  in  our  example.  they  have  the  fonn  

A  " VA  =  --3 tP  +h.c.  (4.256) 
M"­

Like  the  mass  tenn,  the  scale  of  A  is  of  order  the  current  Hubble  constant  H.  
Note  that  such  tenns  do  not  conserve  B  - L  and  this  is  the  source  of the  (B  - L)­
violation  necessary  to  generate  a  net  B  - L  in  the  evolution  of  the  flat  direction.  
The  Sakharov  criteria.  necessary  for  baryogenesis,  also  require  CP-violation  and  
we  shall  see  later  that  a  CP-violating  phase  difference  between  this  A-tenn  and  
that  arising  from  the  hidden-sector  supersymmetry breaking  is  essential  to  getting  
a  non-zero  baryon  asymmetry  at  the  end.  

The  equation  of  motion  for  the  field  tP  is  

..  .  av  
,p+3H,p+- =0  (4.257) 

fJr/J*  
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where  V  is  the  potential  obtained  by  combining  the  contributions  from  Vnr  in  
(4.254),  VA  in  (4.256)  and  the  mass  term  for  t/>.  It  has  the  form  

2  2  (a}"HI4Jn  )  214J12n - 2  
V  =  -cHI  It/>  I  +  nMn-3  + h.c.  +  IAI  M2n-6  (4.258)  

where  HI  is  the  (approximately  constant)  value  of  the  Hubble  parameter  during  
inflation  and  a,  c  are constants  of O( 1).  This, of course, is just  the equation of a  
damped  oscillator  and  the  important  point  is  that,  during  inflation,  it  is  close  to  
being  critically  damped.  If c  <  0,  which  corresponds  to  positive  mass-squared  for  
t/>,  V  has  a  minimum  at  t/>  =  O.  In  this  case,  the  average  value  of the  field  evolves  
exponentially  to  t/>  =  0  and  the  large  value  at  the  end  of  inflation  needed  to  get  
a  baryon  asymmetry  is  not  achieved  [72].  However,  if c  >  0,  which,  in  general,  
requires  non-minimal  Kiihler  terms,  V  has  a  single  minimum  at  t/>o,  where  

RH  Mn-3  )1/(n-2)  
It/>ol  =  ( ~~~l__  (4.259) 

A  

with  f3  a  numerical  constant  which  depends  on  a,  c.  n.  Thus,  It/>o  I is  parametrically  
between  HI  and  M,  which  can  easily  be  large.  In  the  angular  direction.  the  
potential  varies  as  cos(arg  a  +  arg  A.  +  n  arg  t/»  and  has  n  degenerate  minima.  
Further.  again  because  of  the  near  critical  damping.  the  field  evolves  rapidly  to  
one  of these  minima,  providedc  is  not  too  small  [72].  Thus,  at  the  end  of inflation,  
the  average  value  of  the  field  has  a  large  value  with  a  well-defined  phase,  which  
is  constant  over  scales  large  compared  with  the  horizon.  

This  sets  the  boundary  condition  for  the  next  era.  After  inflation  the  universe  
enters  a  matter-dominated  era  in  which  the  Hubble  constant  is  explicitly  time­
dependent:  

2  
(4.260) H=  31  

(see  section  1.4).  The  equation  of  motion  is  still  given  by  (4.257),  with  V  of  
the  form  (4.258)  but  with  H  now  given  by  (4.260).  As  t  increases,  H  decreases,  
so  that  the  instantaneous  minimum  of  V  also  decreases.  Solving  the  equation  of  
motion  reveals  that  t/>  tracks  just  behind  this  decreasing  minimum.  

This  evolution  continues  until  H  .....  m3/2  '"  I  TeV,  where  m3/2  is  the  
gravitino  mass.  At  that  point,  the  soft  supersymmetry-breaking  terms  from  the  
hidden  sector  become  comparable  with  those  arising  from  inflation  and,  at  later  
times,  dominate  the  evolution.  The  bidden-sector  terms  contribute  a  positive  
mass-squared  term  for  t/>  as  well  as  an  A-term,  both  baving  scales  determined  
by  m3/2.  Thus,  the  additional  contribution  to  the  potential  V  has  the  form  

2  2  ( Am3/2At/>"  ) Vhs  =  m;It/>1  +  nMn-3  + h.c.  (4.261)  

where  m",  .....  m3/2  and  A  =  0(1).  Consequently  the  equation  of  motion  (4.257)  
becomes  underdamped  as  H  decreases  below  m3/2.  1\vo  important  effects  now  



Affleck-Dine  baryogenesis  141  

come  in  to  play.  First,  the  positive  mass-squared  tenn  dominates  the  inflationary  
contribution,  so  that  q,  begins  to  oscillate  undamped  about  q,  =  0,  with  initial  
condition  rp  =  </Io(t)  at  t  ,....,  m3;~. The  oscillation  of  rp  is  the  coherent  condensate  
with  number  density  

P~ 2  
n~ = - =  m~lrpl (4.262)  

m~ 

where  P~ is  the  energy  density  in  the  condensate.  Second,  when  the  (CP-violating  
and  (B  - L)-violating)  hidden-sector  A-tenn  dominates  the  inflationary  tenn,  the  
potential  in  the  angular  direction  varies  as  cos(arg  A  +  arg  A +  n  arg  rp).  Thus,  
if  arg  A  '#  arg  a,  a  non-zero  'torque'  is  created  and  a  non-zero  {}  develops.  This  
is  precisely  what  is  needed  to  create  a  baryonllepton  asymmetry.  The  number  
density  for  the  U(I)B-L  charge  of  the  condensate  is  

nB-L  =  i(rp*Oorp  - rpOoq,*)  =  2IrpI2{}.  (4.263)  

The  equation  of  motion  has  been  integrated  numerically  by  Dine  et  at  [72J,  who  
find  that,  at  late  times  (t  »  m3/2),  the  ratio  nB-L!n~ generically  evolves  to  a  
constant of order unity.  At late times,  the potential is dominated by the (positive)  
mass  tenn  which,  of  course,  conserves  B  - L.  Thus,  the  B  - L  created  during  
the  time  when  H  ,....,  m3/2  is  conserved.  

It  remains  only  to  convert  this  O(  I)  ratio  to  the  physically  relevant  baryon  
to  entropy  ratio  nB-LIs.  When  H  ,....,  m3/2,  the  energy  density  of the  condensate  
P~ ,....,  m~/2IrpI2 is  much  smaller  than  the  energy  density  PI  associated  with  the  

coherent  oscillations  of  the  inflaton,  PI  ,....,  tH2m~. Using  (4.259),  we  see  that  

3)2/Cn-2) P~ ~ (  m3/2Mn­ (4.264)  
PI  Amn- 2 

p  

This  ratio  remains  approximately  constant  until  the  inflaton  decays  at  some  time  
when  H  <  m3/2.  Provided  that  the  inflaton  decays  dominate,  the  entropy  density  
is  given  by  

PI  
s~- (4.265) 

TR  

where  TR  is  the  reheat  temperature  after  inflaton  decay.  Thus  

nB-L  nB-L  TR  P~ --=---- (4.266) 
s  n~ m~ PI  

The  ratio  (4.264)  is  very  sensitive  to  n.  For  n  >  4,  M  ,....,  mp  and  a  reasonable  TR,  
the  ratio  nB-Lis  is  generally  too  large.  For  example,  to  get  the  observed  value  of  
nB-LIs"""  10-10  with  n  =  6  requires  TR  to  be  of order  the  electroweak  scale.  In  
contrast,  n  = 4  gives  

nB-L  ,....,  10-10  (  TR  )  (1O-3M)  (4.267) 
s  1()6  GeV  Amp  
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which  gives  an  acceptable  ratio  for  a  reasonable  range  of the  parameters.  
As  long  as  the  t/J  condensate  decays  via  (B  - L)-conserving  decay  processes  

after  the  inflaton,  the  previous  estimate  of  the  ratio  is  insensitive  to  the  details  of  
the  decay.  However,  even  though  most  of  the  inftaton  energy  is  not  converted  to  
radiation  until  H  =  HR  <  m3/2,  the  condensate  might  also  decay  via  thermal  
scattering  as  soon  as  t/J  is  small  enough,  which  is  when  gt/J  <  T,  where  g  is  the  
gauge  or  Yukawa  coupling  constant.  This  must  be  unimportant  when  H  '"  m3/2.  
However  [72],  the  value  of t/J/  T  is  rather  sensitive  to  the  integer  n.  For  n  = 6,  the  
required  condition  is  comfortably  satisfied  but  the  n  = 4  case  is  borderline.  

The  only  flat  direction  having  B  - L  non-zero  and  having  n  =  4  corresponds  
to  

A.  2 
W  =  M  (LHu)  (4.268)  

which  might  arise  directly  at  the  string  scale  or  be  generated  from  a  GUT  by  
integrating  out  a  heavy  standard-model  singlet  field  N  with  coupling  g LHIIN.  At  
low  energies,  this  operator  generates  neutrino  masses  

A.  2 
'"  -v  (4.269) m\l  2M  

where  v  is  the  Higgs  VEV.  Then  

nB-L  '"  10-10  (  TR  )  (IO-BeV)  (4.270) 
s  1()6  GeV  m\l  

where  m\l  is  the  lightest  neutrino  mass.  Taking  TR  <  109  GeV  then  requires  at  
least  one  neutrino  to  be  lighter  than  about  10-5  eV,  with  an  even  stronger  bound  
of  10-8  eV  if  the  constraint  TR  <  106  GeV  is  enforced  to  ensure  that  thermal  
scattering  is  unimportant  when  H  '"  m3/2.  Interestingly,  in  this  case,  non­
minimal  Kiihler  terms  are  not  needed  to  ensure  a  negative  mass-squared  for  t/J.  
This  is  because  such  terms  can  arise  for  the  Higgs  field  via  radiative  corrections.  

4.13  Exercises  

I.  Show  that  the  nucleon-antinucleon  annihilation  rate  falls  below  the  
expansion  rate  when  the  temperature  T  ::::::  20  MeV.  

2.  Show  that  in  a  time-reversal  invariant  theory  baryon  number  is  conserved.  
3.  Verify  that  for  the  SUeS)  GUT  N.  has  the  value  given  in  equation  (4.41),  

and  that  for  the  supersymetric  theory,  it  has  the  value  given  in  (4.42).  
4.  Show  that  the  superbeavy  gauge  bosons  in  the  SUeS)  GUT  have  the  decay  

modes  given  in  equation  (4.67)  and  that  the  colour-triplet  Higgs  has  the  
decay  modes  given  in  (4.71).  

5.  Verify  that  in  the  SUeS)  GUT  there  are  no  two-loop  contributions  to  
r(H3)  - r(ii3)  and  that  the  three-loop  contribution  given  in  equation  (4.81)  
does  arise  in  the  theory.  
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6. 	 Verify  equation  (4.86).  
7. 	 If  the  S0(10)  GUT  symmetry-breaking  Higgs  transforms  as  the  16­

dimensional  representation,  show  that  the  gauge  group  breaks  to  SU(5)  x  
U  (1). and  if the  Higgs transforms as  the S4-dimensioinal representation, then  
the  gauge  group  breaks  to  G422  given  in  equation  (4.97).  

8. 	 Verify  equations  (4.130)  and  (4.131).  
9.  Verify  equation  (4.136).  
10.  Show  that  in  the  standard  model  the  communication  of  CP-violation  to  the  

baryon-numbernon-conserving  processes,  via  the  phase  in  the  CKM  matrix,  
arises  first  in  12th  order  perturbation  theory,  as  given  in  equation  (4.210).  
Verify  equation  (4.214).  

11.  Verify  that  decoupling  of  the  baryon-number  non-conserving  interactions  
occurs  at  a  temperature  T*  given  by  equation  (4.223).  

12.  Verify  equation  (4.240)  relating  the  asymmetry  nA  to  the  chemical  potential  

/La·  
13.  Show  that  in  the  direction  (4.249)  all  of  the  F -terms  derived  from  the  

superpotential  (4.248)  are  zero.  
14.  Show  that  in  the  direction  (4.249)  all  of  the  D-terms  are  also  zero.  
15.  Verify  that  the  potentia]  (4.258)  has  a  minimum  of the  form  given  in  (4.259).  
16.  Verify  (4.264).  
17.  Show that  in the MSSM the subspace  of field directions in which all  D-terms  

vanish  is  37-dimensional  [72].  

4.14  General  references  

• 	 Riotto  A  1998  Trieste  1998,  High  Energy  Physics  and  Cosmology  pp  326­
436,  arXiv:hep-ph/9807454  

• 	 Trodden  M  1999  Rev.  Mod.  Phys.  71  1463,  arXiv:hep-ph/9803479  
• 	 Cline  J  M,  Joyce  M  and  Kainulainen  K  2000  lHEP  0007  018,  arXiv:hep­

ph/0006119  

Bibliography  

[1] 	 Saeki  T  et  al  1998  Phys.  Len.  B  422  319  
[2] 	 Sleeker  F  W.  Morgan  D L  and  Bredekamp  J  1971  Phys.  Rev.  Len.  27  1469 
 

Steeker  F W  1985  Nucl.  Phys.  B  252  25 
 
MohanlY  A K  and  Sleeker  F W  1984  Phys.  Lett.  B  143  351 
 
Gao  Y  T.  Sleeker  F  W.  Gleiser  M  and  Klein  D B  1990  Astrophys.  1.  Len.  37  361 
 

[3]  Steigrnan  G  1976  Ann.  Rev.  Astron.  Astrophys.  14334  
[4] 	 MalherJ  C  1999  et at Astrophys.  1  512  511  
[5]  Spergel  D N  et  al2oo3  Astrophys.  J.  Sup pt.  148  175.  arXiv:astro-phl0302209  



144  Baryogenesis  

[6]  Sakharov  A D  1967  Pis'ma  Z  Elcsp.  Teor.  Fiz  532  
English  translation  1967  JEI'P Len.   524  

[7]  Particle  Data Group  2002   Phys.  Rev.  D 66   01 ()()()  1  
[8]  Christenson  J H,  Cronin  J W,  Fitch  V L and   TurJay  R 1964   Phys.  Rev.  Len.  13  138  
[9]  Schubert  K R et  al1970  Phys.   Len.  B 31   662  

Angelopoulos  A  et al   1998  Phys.  Len.  B 444   43  
[10]  See.  for  example.  Bailin  D  and  Love  A  1994  Introduction  to  Gauge  Field  Theory  

(revised edition)  (Bristol:   lOP)  
[11]  See,  for  example.  Bailin  D  and  Love  A  1994  Supenymmetric  Gauge  Field  Theory  

and  String  Theory  (Bristol:  lOP)  
[12] 	 Nilles  H P  1984  Phys.  Rep.  110  1  
[13]  Langacker P   1981  Phys.  Rep.  C  72185  
[14] 	 Ellis J.   Kelley  S  and Nanopoulos   DV 1991   Phys.  Len.  B  260  131  

Amaldi  V,  de  Boer W   and  Furstenau  H  1991  Phys.  Len.  B  260 447   
[15] 	 Tomozawa Y   1981  Phys.  Rev.  Len.  46463  

Berezenskii  V.  Joffe  B and   Kogan  Ya  1981  Phys.  Len.  B  10533  
Donoghue  J  and  Golowich  E  1982  Phys.  Rev.  D  26  2888  
Lucha W   1983  Phys.  Len.  B  122 381   
Isgur N   and  Wise  M  1982  Phys.  Len.  B  118  179  

[16]  Nanopoulos  D V  and  Weinberg  S  1979  Phys.  Rev.  D  20 2484   
[17]  Harvey  J  A, Kolb   E W.   Reiss D  B  and  Wolfram  S  1982  Nucl.  Phys.  B 201   16  
[18] 	 Ellis  J.  Nanopoulos  D V  and  Gaillard  M K  1979  Phys.  Len.  B  80 350   

ElIis J,  Nanopoulos   D V  and Gaillard  M  K  1979  Phys.  Len.  B 82  464   (erratum)  
[19] 	 Barr S.   Segre G   and Weldon   H A  1979  Phys.  Rev.  D 20  2494   
[20] 	 Kolb  E Wand  Turner  MS   1983  Ann.  Rev.  Nucl.  Part.  Sci.  33 645   
[21] 	 Masiero A   and  Segre G   1982  Phys.  Len.  B  109  349  
[22]  Peccei  Rand Quinn  H  R  1977  Phys.  Rev.  Len.  38 1440   

1977  Phys.  Rev.  D  161791  
[23]  Wise  M.  Georgi  H  and  Glashow  S L  1981  Phys.  Rev.  Len.  47402  
[24]  Yanagida  T  and  Yoshimura  M  1980 Nucl.   Phys.  B  168  S34  
[25]  Masiero A   and  Yanagida  T  1982  Phys.  Len.  B  109 353   
[26]  Harvey J  A.   Kolb  E  W.  Reiss  D B  and  Wolfram  S  1973  Phys.  Rev.  Len.  31  661  
[27]  Super-Kamiokande collaboration   1998  Phys.  Rev.  Len.81  1562  
[28]  Pati  J C  and  Salam A   1973  Phys.  Rev.  D  81240  

Pati  J C  and  Salam A   1973  Phys.  Rev.  Len.  31661  
Pati  J C  and  Salam A   1974  Phys.  Rev.  D  10275  

[29]  Chang  D.  Mohapatra R  N  and Parida  M  K  1984  Phys.  Len.  B  142  55  
[30]  Lyth  D H  and  Riotto  A  1999  Phys.  Rep.  3141  
[31]  Riotto A   1998  Theories  of Baryogenesis  Lectures delivered  at   the  Summer School  on   

High Energy  Physics  and  Cosmology.   Miaramare. Trieste.  arXiv:   hep-phl9807054  
[32]  Adler S  L  1969 Phys.   Rev.  177  2426  
[33]  Bell  J S  and Jackiw  R  1%9 Nuovo   Omento A   60 47   
[34]  Fujikawa K   1979  Phys.  Rev.  Len.42  1195  
[35]  Weinberg  S  1996  The  Quantum  Theory  of Fields   vol  II  (Cambridge:  Cambridge  

University  Press)  p  366  
[36] 	 Manton  N S  1983  Phys.  Rev.  D  28  2019  
[37]  Shaposhnikov  M E  1998  Contemp.  Phys.  39  177  
[38] 	 Banks T.   Bender C   and  Wu  T T  1973  Phys.  Rev.  D 8  3346  



Bibliography  145  

Banks  T.  Bender  C  and  Wu  T T  1973  8  3366  
[39] 	 Coleman  S  1977  Phys.  Rev.  D  IS  683  

Coleman  S  1985  Aspects of Symmetry  (Cambridge:  Cambridge  University  Press)  ch  7  
[40] 	 Coleman  S  1977  Phys.  Rev.  D  IS  2929  

Coleman  S  1977  Phys.  Rev.  D  16  1248  (erratum)  
Callan  C G  and  Coleman  S  1977  Phys.  Rev.  D  16  1762  

[41]  Belavin  A  A,  Polyakov  A  M.  Schwartz  A  S  and  Tyupkin  Yu  S  1975  Phys.  Len.  B  S9  
85  

[42] 	 't  Hooft  G  1976  Phys.  Rev.  Lett.  37  8  
't Hooft  G  1976  Phys.  Rev.  D  143432  

[43] 	 Klinkhamer  F R  and  Manton  N S  1984  Phys.  Rev.  D  30  2212  
[44]  Weinberg  S  1974  Phys.  Rev.  D 9  3357  
[45]  Arnold  P  and  McLerran  L  1987  Phys.  Rev.  D  36  581  
[46] 	 Moore  G D  1998  Phys.  Lett.  B  439  357  
[47]  Arnold  p.  Son  D  and  Yaffe  L G  1997  Phys.  Rev.  D  SS  6264  

Arnold  P  1997  Phys.  Rev.  D  SS  7781  
[48]  Moore  G  D,  Hu  C  and  Muller  B  arXiv:hep-phl9710436  
[49]  Jarlskog  C  1985  Phys.  Rev.  Lett.  SS  1039  
[50]  Shaposhnikov  M E  1986  JETP  Lett.  44  465  
[51]  Kuzmin  V  A,  Rubakov  V A  and  Shaposhnikov  M E  1985  Phys.  Lett.  B  15536  
[52]  Turok  N  and  Zarozny  T  1990  Phys.  Rev.  Lett.  65  2331  

Turok  N  and  Zarozny  T  1991  Nucl.  Phys.  B  349  727  
McLerran  L.  Shaposhnikov  M  E,  Turok  N  and  Voloshin  M  1991  Phys.  Lett.  B  2S8  

451  
[53]  Dine  M,  Huet  P,  Singleton  Rand  Susskind  L  1991  Phys.  Lett.  B  257  351  

Dine  M,  Huet  P  and  Singleton  R  1992  Nucl.  Phys.  B  375  625  
[54]  Lue  A.  Rajagopal  K  and  Trodden  M  1997  Phys.  Rev.  D  SS  1250,  arXiv:hep­

phl9612282  
[55] 	 Linde  A D  1980  Phys.  Lett.  B  96  289  
[56]  Gross  D  J,  Pisarski  R D  and  Yaffe  L G  1981  Rev.  Mod.  Phys.  S3  43  
[57]  Shaposhnikov  M  E  1996  Erice  1996,  Effective  Theories  and  Fundamental  

Interactions  pp  360-83.  arXiv:hep-ph/9610247  
[58]  Nieto  A  1997  Int.  J.  Mod.  Phys.  A  12  1431,  arXiv:hep-ph/9612291  
[59]  Laine  M  1997  Eger  1997,  Strong  and  Electroweak  Matter  '97  pp  160-77.  arXiv:hep­

phl9707415  
[60] 	 Huet  P  and  Nelson  A E  1996  Phys.  Rev.  D  53  4578  
[61] 	 Cohen  A G  and  Nelson  A E  1992  Phys.  Lett.  B  297  I11  
[62] 	 Cohen  A  G,  Kaplan  D B  and  Nelson  A E  1994  Phys.  Lett.  B  336  41  
[63]  Joyce  M,  Prokopec  T  and  Turok  N  1994  Phys.  Lett.  B  338  269  

Joyce  M,  Prokopec  T  and  Turok  N  1995  Phys.  Rev.  Lett.  7S  1695  erratum  3375  
Joyce  M.  Prokopec  T  and  Turok  N  1996  Phys.  Rev.  D  53  2598  

[64]  Cline  J  M.  Joyce  M  and  Kainulainen  K  1998  Phys.  Lett.  B  417  79  
Cline  J  M.  Joyce  M  and  Kainulainen  K  1999  Phys.  Lett.  B  448  321  (erratum)  

[65] 	 Sce  Laine  M  arXiv:hep-phlOOI0275.  and  references  therein  
[66] 	 Huet  P  and  Sather  E  1995  Phys.  Rev.  D  51379  
[67]  Cline  J M  and  Kainulainen  K  2000  Phys.  Rev.  Lett.  85  5519.  arXiv:hep-phl0002272  
[68] 	 Kainulainen  K.  arXiv:hep-ph  0002273  

[69]  Cline  J  M.  Joyce  M  and  Kainulainen  K  2000  JHEP  07018  



146  Baryogenesis  

eline  J  M,  Joyce  M  and  Kainulainen  K  2001  arXiv:hep-phlOII0031  (erratum)  
[70]  Huber  S  J  and  Schmidt  M G  2001  Nucl.  Phys.  B  606  183,  arXiv:hep-ph  0003122  
[71)  Affleck  I  and  Dine  M  1985  Nucl.  Phys.  B  249  361  
[72]  Dine  M.  Randall  L  and  Thomas  S  1996  Nucl.  Phys.  B  458  291,  arXiv:hep­

phl9507453  



Chapter 5 

Relic neutrinos and axions 

5.1 Introduction 

We saw in chapter 1 that, for much of the time, the constituents of the early 
universe were in approximate thermal equilibrium. This is because the rates for 
the interactions of these constituents were large compared with the expansion 
rate H. However, this thermal equilibrium was not maintained all of the time. 
If it were. the current state of the universe would be entirely determined by its 
temperature and we noted in the previous chapter the huge disparity between. 
for example, the equilibrium baryon abundance and that actually observed. 
Departures from equilibrium are, therefore, extremely important in determining 
the abundance of the relics that can be observed today. 

The equilibrium number density nX.eq of a species X is given by 

n -
X.eq -

-g-fd3 
(21r)3 p eE(p)/T 

1 ± (5.1) I 

where g is the numberofintemal degrees offreedom. E(p) = .J<lpI2+ mi) and 
+ I relates to fermions and -1 to bosons. In the relativistic limit T » m x, this 
gives for bosons 

nx.eq = 
~(3) 3 
1r2 gT (5.2) 

and for fermions 
3~(3) T3 

nX.eq = 41r2 g (5.3) 

where {(3) = 1.20206. A similar calculation shows that both the energy density 

= g f 3 I 
PX.eq (21r)3 d p E(p) eE(p)/T ± (5.4) 1 

and the pressure 

--g-Jd3 ~ I 
PX.eq - (21r)3 P 3E(p) eE(p)/T ± (5.5) 

1 
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scale  as  r  in  the  relativistic  limit  and  the  total  (relativistic)  energy  density  is  

1f2  
p  =  3p  =  30 g.,TT4  (5.6)  

where  

(TI)4  7  (11)4 
g.,T  =  L  gl  T  +"8  ~ gi  T  (5.7)  

bosons  femuons  

and  we  are  allowing  for  the  possibility  that  different  particle  species  i  may  be  at  
different  temperatures  Ti'  

In  thermal  equilibrium,  the  entropy  per  comoving  volume  

S  p+p  
S =-=-- (5.8) 

- V  T  

is  dominated  by  the  contribution  of  relativistic  particles  and,  to  a  good  
approximation,  it  is  given  by  

271'2  
s-- 45  g.s,TT3  (5.9)  

where  

(11)3  7  (11)3 
g.S.T  =  L  gi  T  +"8  ~ gi  T  (5.10)  

bosons  femuons  

Comparing  (5.7)  and  (5.10),  we  see  that  when  11  =  T,  so  that  all  particle  species  
are  at  the  same  temperature.  g •• T  =  g.S,T  =  N ••  with  N.  defined  in  (1.104).  
However.  in  general.  they  differ.  

Since  the  entropy  per  comoving  volume  is  conserved.  it  is  useful  to  measure  
the  abundance  of  a  species  X  by  scaling  its  number  density  with  the  entropy  
density.  We  therefore  define  

Yx  ==  nx  (5.  J1) 
s  

Then,  using  (5.2),(5.3)  and  (5.9),  the  equilibrium  abundance  in  the  relativistic  
limit  is  

_  45{(3)  geff  _  0  278  geff Y X.eq,T  - 4  - •  (5.12) 
21f  g.S,T  g.s,T  

where  for  bosons  geff  ==  g,  and  forjermions  8eff  ==  3g/4.  
All  cosmological  relics  contribute  to  the  current  total  energy  density  Po  of  

the  universe.  and  it  is  customary  to  scale  these  densities  with  the  critical  density  

3H2  
Pc  ==  __ 0_  =  1O.54h2  keY  cm-3  (5.13) 

81fGN  

where  Ho  =  lOOh  km  S-I  Mpc-I  is  the  present  Hubble  constant  and  

h  = O.71~:g;, (5.14)  
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The  dimension less  measure of  the  total  energy density   is  then  defined  by  

00= Po   (5.15) 
Pc  

and.  similarly. for   a  relic  species  X  whose  current  energy  density  is  Px.o.  we  
define  

Ox  = px.o  (5.16)  
Pc  

Thus.  

L:0x.o=Oo  (5.17)  
x  

and the   energy density  for  anyone  relic   species  must be  less   than  the  total  energy  
density. so  

Ox.o  <  00  (5.18)  

where  data from   the  latest  microwave anisotropy  probe  (WMAP)   [I] give   

00 =  1.02   ± 0.02.   (5.19)  

The  current  energy  density  of  a  species  X  is  given  in  terms  of  the  current  
abundance  by  

px.O  = flx.omx  = Yx.osomx   (5.20)  

so  provided we   can calculate  the   current abundance   Yx.o.  and  the  current entropy   
density  so.  a  bound on   the  mass  m x  of any  relic  species  may  be  obtained:  

Pc 00  
<  --.  (5.21) 

mx  soYx.o  

A stronger  bound  may  be  obtained  by   replacing 00  by   Om  where the   latter derives   
from  the  total  matter content  in   the  universe.  The WMAP  analysis  gives   

Omh2  = 0.135~::: (5.22)  

with  h  given  by  (5.14).  
In  the  next section.   we  shall  apply the   foregoing considerations  to  neutrinos,   

in  order  to  see  what  can  be  inferred  about  their  masses.  In  section  5.3  we  shall  
attempt  a  similar analysis   for  'axions'. hypothetical   particles  that  are  required  to  
exist if the  'strong CP  problem' of the standard  SU(3)  x  SU(2)  x  U(I>  model  of  
particle  physics  is  solved  by  the  'Peccei-Quinn'  mechanism.  currently  the  only  
known  solution  of this   problem.  Axions  must  be  very  light.  like  the  neutrinos.  
If they   have  survived  until  the  present,  their  mass  too  is  strongly  constrained  by  
various astrophysical  and  cosmological  data.   
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5.2  Relic  neutrinos  

Uniquely  among  elementary  particles,  neutrinos  participate  only  in  weak:  (and  
gravitational)  interactions.  In  the  early  universe,  scattering  processes,  such  as  
ve  ++- ve,  and  annihilation  processes,  such  as  vii  ++- ee,  kept  the  neutrinos  in  
thermal  equilibrium.  The  total  cross  section  for  such  processes  is  a  '"  G} T2,  
just  on  dimensional  grounds,  since  the  weak:  (Fermi)  coupling  constant  G  F  ......  

IQ-Sm;V2  has  dimensions  [M-2].  Since  from  (5.3)  the  relativistic  number density  

nll,eq  is  proportional  to  T3,  the  total  interaction  rate  fint  ......  avnll.eq  ......  G}TS.  
When  this  is  large  compared  with  the  Hubble  expansion  rate  

47r3GNg •• T  T2 H  =  J87rGNP  ­ (5.23) 3  ­ 45  

there  is  thermal  equilibrium.  However,  when  T  ......  I  MeV,  the  two  rates  are  
comparable:  fint  ......  H.  Below  this  temperature,  the  Hubble  expansion  dominates  
and  thermal  equilibrium  is  not  maintained.  The  neutrinos  are,  therefore,  
decoupled  or  'frozen  out'.  Their  abundance  is  frozen  at  the  value  obtained  at  
the  decoupling  temperature  T dec  ......  I  Me V.  Thus,  the  present  abundance  

YII,o  =  YII,eq,Tdec  (5.24)  

where,  using  (5.12).  

nv  gelT 
Yv,eq,Tdec  = - =  0.278--- (5.25) 

s  g.S,Tdec  

For  a  single  (Ieft-)chiral  neutrino  species  8eiT  =  3/2  (including  the  antineutrino)  
and.  since  Tdec  ......  I  MeV,  

g.S.Tdec  =  2  +  ~(4 +  3  x  2)  =  ¥  (5.26)  

keeping  only  the  electron  and  three  families  of  chiral  neutrinos  as  relativistic  at  
this  temperature.  

In  order  to  determine  the  bound  (5.21).  we  first  need  to  calculate  the  present  
entropy  density  

27r2  3  
so  =  45  g.s.ToTo  (5.27)  

where  g.s. To  is  given  by  (5.10).  At  T  =  To,  the  (relativistic)  species  contributing  
to  So  are  the  photons.  having  g  =  2.  and  the  three  families  of neutrinos,  also  with  
g  =  2  (including  the  antineutrinos).  Thus.  

7  (T.  )3 g.S,To  =  2  + 8  x  3  x  2  :a  (5.28)  

The  temperature  of  the  neutrinos  Tv  differs  from  To  because  after  neutrino  
decoupling,  when  the  temperature  falls  below  T  =  me  '"  0.5  MeV.  electrons  
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and  positrons  annihilate  via  e+e- -+  yy  and  the  entropy  in  the  e±  pairs  is  
transferred  to  the  photons  but  not  to  the  neutrinos  which  are  already  decoupJed.  
For  Tdec  >  T  >  me,  the  species  in  thennal  equilibrium  with  the  photons  
are  the  photons  (g  =  2)  and  the  electrons  and  positrons  (g  =  4),  so  that  
g.  =  2  +  i 4  =  1/.  When  T  «  me,  only  the  photons  are  in  eqUilibrium,  so  
that  g.  =  2.  Conservation  of  entropy,  which  is  proportional  to  g.sT3,  therefore  
requires  that  the  photon  temperature  increases  by  a  factor  (lJ- )1/3  following  the  
pairs'  annihilation,  while  the  temperature  of  the  neutrinos  is  unaffected.  Thus,  

T"  =  (~)1/3 (5.29) 
To  11  

g .s.  7i   - 43  
0 - TT  (5.30) 

and,  with  To  = 2.725  K,  equation (5.27)  gives   

so  = 2889cm-3•  (5.31)  

Finally,  we  note  that from   (5.19)  and  (5.14), the   WMAP data  give   

noh2  = 0.51  ± 0.04.   (5.32)  

Putting  all  of this  together,  we  find  that  

n  -H2  _  8~(3) gelfg.S,To G  T,3  
~""" 0  ­ -3­ (5.33)  Nom"  

1r  g.S.Tdcc  

where  
n"v  ==  P",o  (5.34)  

Pc  
Thus,  

m"  = n"vh2(94.1  eV)  (5.35)  

and  (5.21) gives  the   Cowsik-McClelland bound  [2,3]   

m"  <  48eV  (5.36)  

or,  if we   impose  the  stronger constraint  deriving  from   (5.22),  

m"  <  12.7eV.  (5.37)  

5.3  Axions  

5.3.1  Introduction:  the  strong  CP  problem  and  the  axion  solution  

We  have  already  alluded  in  section  4.7  to  the  infinity  of  topologically  distinct  
vacua  in  electroweak  theory  that  derive  from  the  non-trivial  (third)  homotopy  
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class  of  the  electroweak  SU(2)  gauge  group,  as  noted  in  (4.147).  Since  SU(2)  
is  a  subgroup  of SU(3),  similar  conclusions  apply  to  QCD  and  

1r3(SU(3»  = Z.  (5.38)  

Indeed  the  pure  SU(3)  gauge  theory  has  the  well-known  'instanton'  solutions  [4],  
which  approach  these  vacua  as  Ixl  -+  00.  These  have  (Euclidean)  action  SE  
satisfying  

SE  =  81r2~q I.  (5.39)  
13  

Here  q  is  the  Pontryagin  index  and  is  given  by  

d  fd4X  tr(GI./. ...  OI./.")  (5.40) 
161r2  

and  it  counts  the  number of wrappings of the  S3,  that  is  the  SU(2)  group  manifold,  
by  the  unitary  matrix  U3  (x)  specifying  the  (pure  gauge  transformation)  vacuum  at  
infinity:  G:"  is  the  gluon  field  strength.  See,  for  example,  [5J.  The  consequence  
of this  is  that  the  true  QCD  vacuum,  the  so-called  '9-vacuum',  is  a  superposition  
of these  states  

19)  = Le-iq8 Iq)  (5.41)  
q  

where  Iq)  is  the  'vacuum'  with  Pontryagin  index  q.  Then,  if  we  define  VI  as  the  
operator  that  changes  the  winding  number  by  one  unit,  so  that  

VJlq)  ==  Iq  +  I)  (5.42)  

we  see  that  the  9-vacuum  is  an  eigenstate  of  VI  with  eigenvalue  ei8 •  This  means  
that  the  effective  Lagrangian  has  an  additional  piece  (a  so-called  'O-term')  

9  2  
C  ff =  C +  ....!!.G Q OQI./."   (5.43) 

e  321r2  1./."  

which  is  parity (P),   time-reversal  (T) and  CP  non-invariant.   
A  similar  additional  term  also  arises  when  an  axial  U (I)  transformation  is  

performed on   all  of the quark  fields:   

U(l)A  :  q  -+  eiaY5q.  (5.44)  

The axial   current j~5),  defined  by  

if')  =  LqYI./.Y,q  
q  

=  LliRYl./.qR  -tlLYl./.qd  (5.45)  
q  
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where  qR  and  qL  are  the  chiral  components  of  q.  is  anomalous  [6]  (see  also  
chapter  4  [33.34])  (see  [5]  for  an  account  of  this).  In  fact.  for  massless  quarks,  

a/IfS)  =  N I  g~ GQ GQ/L"  (5.46) 
/L  16:n'2  /LIJ  

where  NI  is  the  number  of  flavours  (=  2NG).  Thus.  as  in  (4.126),  such  a  O-term  
can  be  removed  by  performing  the  V(I)A  transformation  (5.44)  with  

() 
a=---.  (5.47) 

2NI  

With  all  quarks  massless,  the  f)-term  is  not  physical.  since  it  can  be  removed  
by  an  (unobservable)  VO)A  transformation.  However.  this  is  not  the  end  of  the  
problem.  since  quarks  are  not  massless.  The  contribution  of the  mass  terms  to  the  
QCD  Lagrangian  is  

Cm  =  -qLiMijqRj  - qRiMjjqLj  (5.48)  

where  i.  j  =  I,  ... ,  NI  label  the  quark  flavours,  and  Mij  is  the  mass  matrix.  The  
effect  of the  V(I)A  transformation  (5.44)  on  M  is  

V(l)A  :  M  .....  e2ia M  

Mt  .....  e-2ia Mt.  (5.49)  

Thus.  if  M  was  initially  Hermitian.  so  that  there  are  no  yss  in  the  mass  terms,  
it  is  no  longer  so  after  the  transformation  and  the  transformed  Lagrangian  has  
reacquired  the  P  and  T  non-conserving  interactions  which  the  transformation  
(5.44)  with  a  satisfying  (5.47)  sought  to  remove.  The  quantity  8  defined  by  

8  =  0  +  2N I  arg(det  M)  (5.50)  

is  invariant  under  V(I)A  transformations  and  parametrizes  the  T-violation  in  the  
(strong)  QCD  Lagrangian:  8  is  the  effective  QCD  vacuum  angle  in  the  basis  
where  all  quark  masses  are  real,  positive  and  Y5  free.  If non-zero,  it  contributes  
to  the  neutron  electric  dipole  moment  dn  and  the  measured  upper  bound  on  this  
requires  [7]  

8  '" <  IO-IO (5.51  )  .  
The  outstanding  question,  then,  is  why  8  is  so  small.  This  is  the  'strong  CP  
problem'.  

For  each  value  of the  parameter 8,  we  have  a  different  QCD  theory  and  there  
is  no  a  priori  reason  why  one  (very  small  or  zero)  value  is  preferred  over  another.  
A possible escape from  this  is  that 8 is the expectation value  of a field  8 (x),  whose  
VEV  is  determined  dynamically  by  an  effective  potential,  as  happens  when  the  
electroweak  symmetry  is  spontaneously  broken  by  the  Higgs-doublet  field.  Then  
it  is  conceivable  that,  at  the  minimum  of the  effective  potential,  (j  =  o.  
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Before  addressing  the  solution  of the  strong  CP  problem,  we  should  note  that  
CP-violation  might  also  arise  in  electroweak  theory  from  terms  analogous  to  the  
QCD  8-term  (5.43),  namely  

a. 2  8  2  
4  =  ~WO  WO""  +  --.!!!.  Ba""  (5.52) 

3211'2  ""  3211'2  11-"  •  

Each of the 8-terms is a total divergence (see (4. 134) and (4.136»  and so can  
only  contribute  surface  terms  to  the  action.  However,  if  we  consider  Euclidean  
path  integral  configurations  with  finite  action,  the  field  strengths  F""  must  fall  
off  faster  than  1/ r2  as  r  -+  00,  where  r  is  the  Euclidean  distance.  For  the  V  (I)  
case,  this  requires  that  the  vector  potential  B"  falls  off  faster  than  l/r  and  then  
the  surface  integral  is  negligible  as  r  -+  00.  The  basic  reason  is  that  the  81-term  
has  a  trivial  topological  structure.  We  therefore  drop  it  henceforth.  In  contrast,  
the  (h-term  is  necessitated  by  the  non-trivial  topological  structure  (4.147)  of  
SU(2).  It  contributes  non-zero  surface  terms  to  the  action,  even  though  it  is  a  total  
divergence  (4.136).  In  this  case,  there  are  Euclidean  path  integral  configurations  
with  finite  action  in  which  the  field  strengths  W""  .-..;  l/r4  as  r  -+  00  but  
W"  ......  1/ r .  For  these  configurations,  the  surface  terms  are  not  negligible.  
However,  we  have  already  noted  that  of  the  four  global  V (  I)  symmetries  of  
the  standard  model, associated  with  baryon  number  (B)  and  the  lepton  numbers  
(Lt.,  l  =  e,  /.L,  1'),  three,  namely  lB- Lt.,  are  exactly  conserved,  and  the  
remaining  one,  say  V (l) 8,  is  anomalous,  as  noted  in  (4.130).  Thus,  in  a  manner  
directly  analogous  to  that  previously  described  for  V(I)A  (when  the  quarks  were  
massless),  we  may  perform  a  V(I)8  transformation  of  the  quark  fields  which  
removes  the  (h  term.  So  (h  is  evidently  not  an  observable  parameter  and  the  only  
observable  (J  parameter  is  that  associated  with  QCD.  

This  observation  indicates  that  a  possible  solution  of  the  8  problem  is  to  
introduce  afurther  V(l)  symmetry,  designed  to  allow  the  removal  of the  8-term  
by  an  appropriate  transformation  which  changes  arg  det  M.  This  is  the  solution  
proposed  by  Peccei  and  Quinn  [8]  in  which  the  symmetry  group  of the  standard  
model  is  augmented  by  an  additional  global,  chiral  V (l)  symmetry,  known  
universally  now  as  the  V  (1) PQ  symmetry.  However,  we  cannot  do  this  with  
just  the  minimal  Higgs  content  of  the  standard  model.  This  is  because  if  we  
use  the  U(l)  to  rephase  the  Higgs  doublet  by  a  phase  factor  ei&,  say,  the  down­
type  masses  are  rephased  by  ei&,  but  the  up-type  by  e-iJ,  so  that  arg(detM)  
is  unaltered.  Thus  we  must  introduce  additional  scalars.  Further,  the  scalars  
must  not  have  equal  and  opposite  V(l)  charges,  since  otherwise  the  previous  
objection  still  applies.  It  follows  that  the  V(1)  cannot  be  the  existing  V(I)y  
of  the  standard  model,  so  a  new  V(I)PQ  is  required.  Additional  global  V(I)  
symmetries arise  quite commonly in  semi-realistic compactifications  of heterotic  
and  type  1111  string  theories.  Thus,  their  introduction  to  solve  the  8  problem  
seems  less  unattractive  now  than  when  it  was  first  proposed.  Generically,  at  
the  minimum  of  the  effective  potential,  both  the  local  gauge  symmetries  and  
the  global  symmetry  are  spontaneously  broken.  Then,  by  Goldstone's  theorem  
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(see  [S]  for  a  discussion),  there  is  a  scalar  (Goldstone)  boson  baving  zero  mass  at  
the  Lagrangian  level.  This  is  the  axion  a (x).  It  is  associated  with  the  phase  of the  
U(l)PQ  transformation  and,  under  a  U(l)PQ  transformation  parametrized  by  u,  
it  transforms  according  to  

a(x)  a(x) 
--+-+u  (S.53)  
vPQ  vPQ  

where  v PQ  is  the  VEV  associated  with  the  spontaneous  breaking  of  the  U  (1) PQ  
global  symmetry.  Under  the  same  transformation,  a  chiral  fermion  (f)  transforms  
as  

I(x)  ~ e-iz/a I(x)  (5.54)  

where  x I  is  the  Peccei-Quinn  (PQ)  charge  of  I.  Then  the  (PQ)  current  associated  
with  the  symmetry  is  

j(PQ)1'  = ~ =  vPQal'a  + LXf/YP-I  (5.5S)  
a (al'u)  I  

and  this  is  conserved  at  the  classical  level,  because  of  the  U(l)PQ  symmetry.  
However,  because  it  is  a  chiral  symmetry,  the  symmetry  is  anomalous,  just  as  
U(l)A  is.  The  anomaly  has  a  form  similar  to  that  in  (5.46):  

2 2  2  
aP-J·(PQ)  =  1:3~GQ OQI'I)  + 1:2~WQ  WDI'I)  + I:  ~B jjl'l)  (5  S6) 

P- 'i  32n'2  1'1)  'i  32n'2  1'1)  'i 1321f2  1'1)  .  

where  the  parameters  ~i (i  =  I,  2,  3)  are  model-dependent  constants  determined  
by  the  U(l)PQ  charges of the  (chiral)  fermion  states.  

The  axion  field  a(x)  appears  explicitly  in  the  Yukawa  couplings  of  the  
fermions  to  the  scalar  fields:  it  is  these  couplings  which  generate  fermion  mass  
terms  when  the  gauge  symmetry  is  spontaneously  broken.  We  now  make  a  local  
transformation  of the  fermion  fields:  

-ia(X)Xf ] 
I(x)  -+  exp  [ I(x)  (S.57)  

vPQ  

chosen  so  that  the  axion  field  is  removed  from  the  Yukawa  terms.  Because  it  is  a  
local  transformation,  the  fermi on  kinetic  terms  generate  (derivative)  interactions  
with  the  axion  field  

/yl'ial'l  -+  /yP-ial'l  +  XI  (al'a)/yl'l  (S.S8)  
vPQ  

and  because  U(l)PQ  is  anomalous  (see  equation  (S.56»,  extra  non-derivative  
axion  interactions  are  generated:  

(,  =  a(x)  [1:3  g~ GD  ODI'I)  + "2  g~ WD  WDI'I)  + I:  -.!LB  81'11] 
anom  VPQ  'i  32n'2  IlII  .,  32n'2  Ill)  .,1 321f2  IlII  •  

(S.S9)  
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Thus,  the  effective  Lagrangian  is  

[-0  ~3 ()]  g~ Ga  G-a/J.II C  C 
eff  =  11/11  +  +  vPQ  a  x  321r2  /J.II  

+  [fh  +  ~a(x)] g~ Wall  Wa/J.II  +  [01  +  l!....a(x)]  ~B/J.llj/J.II
VPQ  321r2  /J.  vPQ  3211'2  

+  -21 (a/J.a)2  +  _1_(a/J.a)[j(PQ)/J.  - vPQ(a/J.a»)  (S.60)  
vPQ  

where  j<PQ)/J.  is  given  in  (S.55).  Thus,  the  anomaly  generates  a  potential  for  a(x)  
and  it  is  no  longer  true  that  all  values  of  (a)  are  allowed  in  the  vacuum  nor  that  
the  axion  field  is  massless.  In  fact.  in  the  O-vacuum.  Peccei  and  Quinn  showed  
that  

o +  ~(Ola(x)IO) = 0  (5.61) 
uPQ  

so  that  the  T-violating  QCD  9-term  is  cancelled.  We  have  already  noted  that  the  
other  9-terms  may  be  dropped,  so  what  remains  is  an  effective  Lagrangian  in  
which  the  physical  axion  field  a(x),  given  by  

a(x)  = a(x)  - (Ola(x)IO)  (5.62)  

has  interactions  with  the  gauge  field  strengths  and  the  matter  fermions:  

C  = C  +  ~3g~ ..... (  )GII  G-a/J.II  +  bg~ ..... (  )Wa  W-a/J.II 
eff  11/11  3"-2  a x  1-'"  3"-2  a x  /J.II 

~, VPQ  ~ VPQ  

~lgf ..... ()B  -1-'11  I  (a  ~2+ 321r2vpQ a x  /J.IIB  +  '2  /J.a}  

+  _1_(al-'Q)[j<PQ)/J.  - vPQ(a/J.Q)).  (S.63)  
vPQ  

Effectively,  the  offending  T-violation  has  been  removed  by  replacing  the  0­
parameter  by  a  dynamical  (axion)  field.  So  the  next  task  is  to  determine  the  
physical  properties  of  the  axion  and  their  implications  for  experiment.  

5.3.2  Visible  and  invisible  axion  models  

The  properties  of  the  axion  may  be  calculated  using  current  algebra  techniques  
[9-11,14]  or  by  an  effective  Lagrangian  technique  [9.12,  13,15].  The  former  give  

ma  ~ 0.62  eV  (107f~V) (5.64)  

where  
fa  =  vPQ  (5.6S) 

~3 
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fixes  the  strength  of  the  axion  coupling  to  the  gluon  field  strength  in  (5.63).  We  
can  see  roughly  how  this  estimate  arises  by  noting  that  this  coupling  provides  an  
effective  potential  for  the  axion  so  that  

m2  = ( o2Veff)  =  _~ d  i.(Ga  f;a/Lv) 
a  oa2  la  32;r2  oa  /LI!  

AtCD 

"'a  
where  the  last  estimate  is  just  on  dimensional  grounds  [16].  Thus  comparison  
with  the  current  algebra  result  (5.64)  would  imply  AQCD  '"  80  MeV,  which  is  a  
bit low but in the right ballpark.  Although the axion is not massless, it is clear that  
any  reasonable  scale  of symmetry  breaking  will  give  la  »  A QC D,  which  implies  
a  very  light  axion  as  the  price  for  solving  the  strong  CP  problem.  For  example,  
la  .....  V  - 250  GeV  and  (5.64)  gives  ma  '"  24  keY.  

The  effective  Lagrangian  (5.63)  shows  that  the  axion  will  decay  to  two  
photons  with  a  Lagrangian  of the  form  

,.  aem  a(x) 
.&..ayy  =  -gy--E. B  (5.66) 

;r  la  .  

(Without  confusion,  we  may  suppress  the  hat  now.)  This  decay  mode  

a~ YY  (5.67)  

will  be  dominant  unless  
ma  >  2me•  (5.68)  

The  strength  gy  may  be  derived  from  (5.63)  and  is  given  by  

~I +~2 (5.69) gy  =  2~3 

so  it  is  completely  determined  by  the  Peccei-Quinn  (PQ)  charge  assignments.  
Similarly,  from  (5.63)  the  axion  coupling  to  the  fermion  I  is  

I  ,,­
Cf  =  --(0lta)  ~ xfxlyltaxl  (5.70)  

vPQ  x=R,L  

where  
ax  =  !(l  ±  YS)  forx=R,L.  (5.71)  

Equivalently,  C f  can  be  written  in  the  form  

mf­
If = ig,-/ys/ (5.72)  

vPQ  
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with  the  strength  g f  given  in terms  of  the PQ   charges of  the   right- and left-chiral   
components of  I  by  

gf =   XfR  - x/L.  (5.73)  

There  is  by  now  overwhelming  evidence  that  the  original  'visible'  axion,  
characterized by   

la  '" VPQ   '" V   '" 250  GeV   (5.74)  

does not  exist  [15].   We  mention  briefly  some of  the   laboratory-based experiments   
that  lead  to  this  conclusion.  The  coupling  of the   light  quarks  u, d   to  the  axion  
may  be  expressed in   terms of  isoscalar and   isovector combinations  in   an  obvious  
way.  The isovector  part  (A  I) determines  the   mixing between  the   axion  and  the 1r 0  

and,  since the   decay rate   for pion   beta-decay  

1r+  ....  1r°e+ve  (5.75)  

is  well  known,  the  rate  for  the  process  

1r+  ....  ae+ve  (5.76)  

can  be  reliably  predicted  in  terms  of the   isovector  amplitude  (AI).  Now,  if the   
mass  of the   axion  satisfies  (5.68)  it decays  rapidly   via  the  process  

a  ....  e+e- (5.77)  

and  a  bound  on  the  branching  ratio  for  this  process  can  be  inferred  from  the  
measured branching  ratio   [17]  for the   process  

rr+  ....  e+e-e+ve  (5.78)  

This requires   that the   isovector amplitude  is   small,  

lAd  :s  2  x  10-2  (5.79)  

and  this  is  sufficient  to  exclude  the  'short-lived  visible  axion'  models  satisfying  
(5.68), since   AI  is  predicted to   be  large  in  such  models  [15].  

However,  if the   mass of  the   axion  satisfies  

ma  <  2me  (5.80)  

it  can  only  decay  slowly,  via  the  process  (5.67).  In  this  case,  there  are  strong  
experimental  bounds  deriving  from  the  failure  to  detect  axion  production  in  
various  beam  dump experiments.   In  such  experiments,  many  different processes   
may  produce  axions  and  while  it  is  difficult  to  calculate  individual  processes  
reliably,  they  contribute incoherently  and   cannot all   vanish.  Thus,  the  production  
cross sections  for  the   processes  

pN  ....  aX  

eN ....   aX  
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and  the interaction  cross  section  for   

aN~X (5.81)  

can  be  confidently estimated  and  collectively  they   require  [181  

ma  $  50keV.  (5.82)  

Thus,  if the   solution  of the   strong  CP problem   is  to  be  found  using  the  PQ  
mechanism,  the  axion  must be   'invisible'  in  these experiments.   All  models  which  
achieve  this  use  an  SU(3)  x  SU(2)  x  U(I) singlet   scalar  field  {1  having  a  non­
zero  U(l)PQ  charge,  which  acquires  a  large  VEV  (vPQ  »  v)  so  that  the  beam  
dump  bound  is  satisfied.  One  way  to  achieve  the  invisibility  is  if the   known  
quarks  and  leptons  have  zero  U(1)PQ  charge  but  there  exist  some  new  quarks  
(X),  presumably  very  heavy,  having  non-zero  PQ  charge.  Such  a  possibility  
was  proposed  by  Kim  [191  and  by  Shifman  et  al  [20]  and  the  axion  is  called  
the  'KSVZ' or   'hadronic'  axion.  The coupling  to  the   scalar field   {1  is  given  by  

£KSVZ  =  -hXL{1XR +h.c.   (5.83)  

and  there is   no  (tree-level) coupling  to   the  leptons.  Another possibility.   suggested  
by Dine  et  al [21]   and by  Zhitnitskii   [22], is   that the   known quarks  and  leptons  do   
carry PQ   charge so,   as in  the  original  model,  two  Higgs  doublets   HI.2  are  required  
but they  are  coupled  to   the PQ   field  (1  only via  a  term  in   the Higgs  potential  having   
the  form.  

VDFSZ  = AHfir2H2{1   + h.c.  (5.84)  

This was   discussed  in  [51.  The axion   in  this  model  is  called the   'DFSZ' or  'GUT'   
axion.  Although  differing  considerably  in  their  physical  input,  the  models  make  
similar predictions  for  the  coupling  strength  gy   of the   axion  to  two photons:   

g~SVZ =  _  0.96  

g~FSZ = 0.37.  

5.3.3  Astrophysical constraints  on  axions   

The  experimental  requirement  discussed  earlier  that  axions,  if they   exist,  must  
be  'invisible'  implies  that  their coupling   to  photons,  leptons  and  hadrons  is  very  
weak.  This  is  most  naturally  achieved  by  making  fa  '"  VPQ  very  large  which,  
from  (5.64)  in  turn  entails ma   being  very  small.  For example,   for  a  GUT axion,   
we  might  expect  fa  '"  VPQ  '"  VGUT  =  0(1015  GeV)  and  then  (5.64)  gives  
ma  -10-8 e  V.  In  principle, any  weakly  interacting  particle  having  a   mass  smaller  
than  typical  stellar  temperatures,  i.e.  in  the  keV-MeV  range,  can  provide  an  
additional  mechanism  for a   star  to  cool,  besides  the  standard  neutrino  emission.  
Of course,   the  interactions  must  be  strong  enough to   ensure  sufficiently  copious  
production  of the   particle  so  that  large  amounts  of energy   can  be  carried  away  
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by  the  new  coolant  but  weak  enough  for  the  coolant  to  stream  away  without  
undue  hindrance  from  too  many  interactions.  Since  stellar  evolution  models  are  
well  developed  and  successful  in  accounting  for  the  observed  stellar  lifetimes,  the  
axion  production  cross  sections  and,  hence,  the  strength  of  its  various  couplings  
are  constrained  by  the  error  bars  on  the  observational  data  [23-27].  

For  example,  in  globular  cluster  stars,  axions  may  be  produced  by  the  
Compton  process  

ye  -.  ae  (5.85)  

shown  in  figure  5.1,  or  by  axion  bremsstrahlung  

eZ  -.  aeZ  (5.86)  

shown  in  figure  5.2.  The  production  cross  section  for  both  of  these  and,  hence,  
the  stellar  cooling  rate  is  proportional  to  g~ee where,  using  (5.72),(5.73),  (5.65)  
and  (S.64),  

me  (XeR  - xedmame  
(S.87) 

gau  =  ge  vPQ  = ~3(0.62 X  1016  eV2)'  

The  observational  data  yield  the  constraint  [23,28)  

Igaeel  ;S  0.5  x  10-12  (S.88)  

so that   

I (XeR  ~ x.L> I  ma  ;S  0.62  x  10-2  eV  (S.89)  

which gives  ma   ;S  10-2 e  V  as the  generic  constraint  on  DFSZ  models,  taking the   
unknown  PQ  charges  to  be  of order  unity.   Of course,   the  mass  of the   hadronic  
axion is   unconstrained by  these  data.   

The  globular cluster  data   also  constrain  the  axion-photon coupling,   which  
enters via  the   Primakoff process  

y  .. a  (S.90)  

shown  in  figure  5.3,  in  which  a  photon  is  converted  to  an  axion  in  the  coherent  
electromagnetic field  of a  nucleus or  an electron.  The production cross section is  
proportional to  g~""  where,  from (S.66)   and (S.64),   

aem  mag"aem  
(5.91) gay"  = g" '!rIll   = '!r(O.62  X  1016  eV2)  

and  the data  yield  the  constraint  [27]   

IgIIyyl  ;S  0.6  x  10-10  GeV-I •  (S.92)  

Then  

Igylmll  ;S  0.16 eV   (S.93)  
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Figure 5.1.   Axion  production  via the   Compton  process.  

and  ma  $  0.4  eV  for  both  the  DFSZ  and  KSVZ  axions.  
Similar  arguments  may  be  applied  to  the  cooling  of  neutron  stars.  In  the  

supernova  SN  1987 A.  thermal  neutrinos  transported  away  the  binding  energy  of  
the  newly  formed  neutron  star  in  about  10  s  [29.30).  in  accord  with  theoretical  
calculations.  The  possibility  of  other  mechanisms  for  removing  the  energy  is.  
therefore,  constrained  and,  for  axions,  the  axion-nuc1eon  coupling  is  constrained,  
which.  in  turn,  constrains  the  mass  [31,32]  to  satisfy  

ma  $  0.01  eV.  (5.94)  

5.3.4  Axions  and cosmology   

If  they  exist,  axions  would  be  produced  in  the  early  universe  and  the  relic  axions  
have  important  implications  for  current  and  future  observations.  In  principle,  
axions  may  be  produced  thermally  or  non-thermally  and  two  distinct  non-thermal  
mechanisms  have  been  proposed.  

The  discussion  of  thermal  production  is  straightforward.  At  high  
temperatures,  axions  are  created  (and  destroyed)  by  photoproduction  or  
gluoproduction  on  quarks:  

yq  ..  aq  (5.95)  

gq  .. aq.  
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Figure  S.2.  Axion  bremsstrahlung.  

When  the  temperature  drops  below  that  of  the  quark-hadron  phase  transition  
T  ;S  AQCD  '"  175  MeV,  by  the  pion-axion  conversion  process  (5.90)  

7rN  ~ aN.  (5.96)  

Each  of these  processes  has  an  associated  absorption  rate  

rIt,s  =  nr(ul vl)abs  (5.97)  

where  nr  is  the  number  density  of  the  axion's  target  T  =  q  or  N,  u  is  the  
scattering  cross  section,  v  is  the  relative  velocity  of  the  axion  and  the  target  T  
and  ( ... )  denotes  a  thennal  average.  If the  expansion  rate  of  the  universe  is  slow  
compared  with  the  total  absorption  rate  r abs,  then  we  expect  that  these  processes  
will  eventually  achieve  thennal  equilibrium  with  the  standard  (relativistic)  axion  
number  density  given  by  equation  (5.2)  with  ga  =  I.  However,  if  the  axions  
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Figure  5.3.  Photon-axion  conversion:  the  Primakoff  process.  

interact  too  weakly.  the  total  absorption  rate  is  too  slow  for  them  ever  to  reach  
thermal equilibrium  and  their  number  density  freezes  out  with  a  value  below  na.cq.   

To quantify  this.   we  use  the  abundance defined  in   (5.11) with  the  equilibrium   
value  given  in  (5.12)  with  ga.eff  =  1.  The  Boltzmann  equation  determining  the  
evolution of  Y a  is  

dYa  
dt  =  -rabs(Ya  ­ Y.,cq)'  (5.98)  

Thus,  Ya(t)  always  lies  between  its  initial  value and   y:q :  

Ya(t)  - Ya.cq  =  (Ya(O)  - Ya,cq)exp (  ­ fot  rabsdt').  (5.99)  

It is  convenient to recast the integral in  terms of  the variable  

mN  
x=T'  (5.100) 

In  the  radiation era  the   scale  factor  R(t)  ex  t l / 2 ,  so that  the   Hubble rate   

1 
H  =  - ex  T2  exx-2  (5.101) 

2t  

and  the  relic abundance   may be   written  as  

Ya(O»)  (  rabs(X')  ,)] (5.102) Ya(x) [  (   = Ya,cq   1 - I - Ya.cq  exp  - Jo 
re 

 
 
x' H  (x')  dx  .  

Below  the  quark-hadron phase   transition.  the  nucleons  are  non-relativistic  
and  have  an  equilibrium number  density  given  by  (5.1)  in   the  limit  T  « m  N.  

nN  =gN 
2 )3/2 
(  mN   e-x  (5.103) 

21l'X  •  
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The thennally-averaged  cross  section  is   

( 1 I) 2  -2-2 
(1  v abs  =  gaNNx  m"  (5.104)  

with  
mN  

(5.105) gaNN  ~ IPQ'  

In  the radiation-dominated  era,   

1/2  
H  =  (  8np ) = 211'   (lI'g.)1/2  m1  .  (5.106)  

3m~ 3  5  x 2mp  

Putting all   this together,   we  get  

rabs(X)  =  3gN  8g.  
1/2  (  312  1/2)2 

(  ~ ) mN  mp x-3/2e-x 

H(x)  211'3  fpQm7r  

10  1/2  (  mu  -3/2  -x  
~ (  - ) )2  

x  e  (5.107) 
g.  1.2  x  10-3  eV  

using  (5.64).  Above  the  quark-hadron  phase  transition,  the  processes  (5.95)  
dominate  and  r  abs/ H  scales  as  x,  achieving  its  maximum  value  just  after  the  
transition.  Thus,  we  can estimate  the   final  relic  abundance as   

Yu(O») 
Yu(oo)  = Yu.eq  1  1 - ( 1 - Yu.eq  

3 2!~  (8g.) 5  1/2   (  3/2  1/2)2  ]  
x  exp [  - m;:'Q::  I (Xqlt)  

I 
= --0.2781 1 - (1  - 3.6g •• dec:Ya(O)) 

g •• dec  

x  exp  [- G~)'" C.2  x  ~~, ev)' I(X.')]   I  
(5.108)  

where  

I(Xqh)  ==  100 x,,,  x,-5/2e-x' dx'  

= - ~[x;:/2e-x,,, (2xqlt  - 1)  + 2,Jif(erf(Jxqlt)  - 1)]  (5.109)  

and g  •. dec  is  the  value of  g. at  decoupling  (freeze-out).   The  parameter Xqh   ""  5  is  
the  value of  x  at the  quark-hadron  phase  transition,  so  that   I  '" 1  0-4. Thus,  if  the  
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mass  of  the  axion  were  greater  than  about  0.1  eV,  the  relic  abundance  would  be  
near  to  the  equilibrium  abundance.  In  fact.  masses  this  large  are  already  excluded  
by  the  data,  so  the  relic  abundance  depends  upon  the  initial  value.  For  example,  
with  ma  saturating  the  SN  1987A  bound  (5.94),  we  estimate  that  

Ya(oo)  '"  0.007  +  0.993  Ya(O).  (5.110)  
Ya.eq  Ya.eq  

At  high  temperatures,  it  is  plausible  to  assume  that  there  are  no  axions,  so  that  
Ya  (0)  =  0,  in  which  case  the  relic  abundance  is  very  far  from  thermal.  In  any  
event,  it  is  clear  that  thermal  axions  cannot  provide  anything  like  the  measured  
matter  density.  As  in  (5.16),  we  define  0:  to  be  the  fraction  of the  closure  energy  
density  provided  by  thermal  axions:  

oth  = 
a  --

P:  (5.11l)  
Pc  

Then,  analogously  to  (5.35),  we  find  that  

m  =  g •• dec  Othh2(130  eV).  (5.112) a  to  a  

Saturating  the  measured  value  (5.22)  of  the  current  mass  density  would  require  
ma  .....  18  eV  for  closure,  a  value  which  is  clearly  excluded  by  the  observational  
bounds  already  obtained.  

In  all  of  the  foregoing  discussion,  it  was  tacitly  assumed  that  the  classical  
axion  field  had  a  constant  value.  in  fact  the  value  (5.61)  needed  to  ensure  that  
the  strong  9"-term  vanishes.  However,  in  the  early  universe,  when  the  temperature  
T  .....  fa  »  AQCD,  the  U(l)PQ  symmetry  is  broken  and  massless  axions  are  
created.  The  potential  which  gives  the  axions  a  mass  arises  from  non-perturbative  
instanton  effects  only  when  the  temperature  drops  to  T  '"  AQCD.  Thus,  at  high  
temperatures,  there  is  no  reason  why  the  axion  should  have  the  preferred  value  
for  which  9"  =  O.  When  instantons  generate  a  potential  for  the  axion  field.  it  
will  roll  towards  the  preferred  value,  so  the  foregoing  assumption  that  the  field  
is  a  constant  is  not  true  during  this  era.  This  'misalignment'  of  the  field  with  its  
ground-state  value  means  that  there  is  a  non-zero  axion  field  energy  density  which  
we  shall  now  calculate.  

We  assume  that  the  axion  field  is  spatially  homogeneous  and  depends  only  
on  time.  Then.  from  (5.63),  the  effective  axion  action  is  

S  =  f  d4x  Ji(!a2  - !m~a2 +  raa)  

=  f  d4x  R3(t)(!ti2  - !m~a2 +  raa)  

where  R(t)  is  the  cosmological  scale  factor  and  we  have  retained  only  the  
quadratic  (mass)  term  in  the  axion  potential.  The  equation  of  motion  is  

dt  
d  

[R3(a  +  r a))  +  R3m;(T)a  = O.  (5.  113)  
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The  decay  width  r a  of  the  axion  is  tiny,  so  we  may  safely  ignore  it  henceforth.  
Initially,  at  high  temperatures  T  »  AQCD,  the  axion  is  massless  and  we  assume  
that  a = O.  Then  the  field  is  constant:  

a(t)  = aj  (5.114)  

where  aj  is  the  initial  'misaligned'  value  of  the  field.  As  the  temperature  falls  
m;(T)  increases  and  the  equation  of  motion  is  

a + 3Hiz  +m~(T)a =  0  (5.115)  

where,  as  usual,  H  ==  RI R  is  the  Hubble  parameter.  Eventually,  the  temperature  
reaches  T;  at  which  

ma(T;)  =  3H(T;)  (5.116)  

and,  thereafter,  a(t)  oscillates  with  frequency  ma(T).  The  energy  density  
associated  with  the  axion  field  is  

Pa  =  }a2  +  }m;a2  (5.117)  

so,  using  (5.115),  
• •  2  3H· Pa  = mamaa  - a.  (5.118)  

Averaging  over  one  oscillation  

(a2 )  =  m;  (a 2 )  (5.119)  

and  then  (5.118)  gives  

(Pa)  =  (::  - 3H)  (Pa)  (5.120)  

whose  solution  is  
(Pa)R3 (t)  ex  ma(T).  (5.121)  

Thus,  the  axion  number  density  na  =  (Pa)/ma(T)  scales  as  R-3 (t),  even  though  
the  axion  mass  is  varying.  The  entropy  density  s  also  scales  in  this  way,  so  
assuming  that  there  has  been  no  entropy  production  since  the  axion  field  began  
to  oscillate,  their  ratio  is  conserved.  When  the  temperature  T  =  T;,  given  by  
(5.116),  

Pa  =  lm~(T;)ar (5.122)  

since  initially  iz  = 0,  and  

na  I  45ma(T;)ar  45al  
(5.123) 

-;  T;  =  41r2g.1:3  =  2"/s1rg.T;mp·  

The present (misaligned) axion energy density is given  as  a fraction  of the closure  
energy  density  by  

n:m  =  p;gs  =  na  I  ma  so  .  (5.124)  
Pr:  S  T;  Pr:  
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Now,  recall  that  the  axion  field  satisfies  (5.61),  so  aj  is  given  in  terms  of the  initial  
value  0;  of the  angular field  0  by  

a;  =  laO;  (S.125)  

where  la  is  given  by  (S.6S),  and  0;  can  be  anywhere  in  the  range  (-H,  H).  The  
temperature  T;  found  by  solving  (5.116)  is  about  1  GeV  for  an  axion  of  mass  
ma  =  10-5  eV  and  

T;  (ma  )0.18  (S.126) 1  GeV  ~ 10-5  eV  .  

Then  

O:"S~O.16h-2(1O)1/2( ma  )-1.18_~ (S.127) g.  10-5  eV  (),.  

Note  the  negative  power  dependence  on  ma.  If  we  replace  0;  by  its  root  mean  
square  (rms)  value  H/.f3  in  the  range  (-H,  H),  we  see  that  the  axion  energy  
density  from  the  vacuum  misalignment  does  not  exceed  the  measured  matter  
density  (S.22),  provided  that  the  mass  of the  axion  is  greater  than  about  10-5  eV.  

However.  it  is  not  clear  that  we  are  justified  in  replacing  OJ  by  its  rms  value.  
In  each  causally  connected  domain,  we  expect  0;  to  have  an  independent  value.  
If  these  values  are  randomly  set,  then  it  is  reasonable  to  replace  0;  by  its  rms  
value  provided  that  the  observable  universe  is  composed  of  many  such  causally  
connected  domains.  We  shall  see  later  that  there  is  good  evidence  that  there  was  
a  period  of  inflation  in  the  early  universe  and.  if  the  reheating  temperature  after  
this  is  over  is  lower  than  that  of  the  PQ  symmetry  breaking.  then  the  observable  
universe  is  composed  of  only  about  one  causal  region  and  we  have  no  a  priori  
reason  for  selecting  any  particular  value  of 0;  in  our  patch  and.  consequently.  no  
way  of  estimating  O::US.  In  any  case.  (S.127)  is  only  a  rough  estimate.  There  are  
theoretical  uncertainties.  which  amount  to  a  factor  6.  ~ l-3.  deriving  from  the  
PQ-model  dependence  and  the  nature  of  the  QCD  phase  transition  and  also  from  
anharmonic  corrections  which  give  a  factor  I  ( 6;)  when  the  initial  value  6;  is  in  
a  region  where  other  terms  in  the  axion  potential  are  important,  besides  just  the  
quadratic  tenus  which  we  have  retained.  

Further.  the  homogeneous  oscillations  of  the  axion  field  correspond  to  
the  creation  of  zero  momentum  axions  and  it  has  been  argued  that  non-zero  
momentum  axions.  with  a  momentum  spectrum  g(k).  are  created  before  the  
temperature  drops  to  T  '"  AQCD  by  other  non-perturbative  effects.  In  
consequence.  the  axion  density  deriving  from  the  'misalignment'  effect  is  an  
underestimate  of  the  actual  density.  as  we  shall  see.  The  U(l)PQ  symmetry  
with  which  we  are  concerned  is  directly  analogous  to  the  global  U (1)  symmetry  
relevant  to  a  superfluid  4He  condensate  at  low  temperatures.  In  this  system.  it  is  
known  that  besides  the  ordinary  bulk  superfluidity,  analogous  to  our  homogeneous  
axion  field,  there  are  also  vortex  configurations  in  which  the  phase  of  the  order  
parameter  (or  the  pair  wavefunction)  varies  spatially.  although  its  magnitude  
remains  constant  (detenuined  by  the  density  of  the  superfluid  condensate).  Such  
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topological  configurations  arise  because  the  fundamental  group  of  the  manifold  
SI  associated  with  symmetry  group  U(I)  of the  ground  state  is  non-trivial:  

:11'1  (Si)  =  z.  (5.128)  

As  we  traverse  any  closed  path  threaded  by  a  vortex,  the  phase  of the  condensate  
varies  continuously  and  changes  by  an  integral  multiple  of  2:11'  when  we  return  to  
the  starting  point  By  shrinking  the  size  of  the  closed  path,  it  is  clear  that  there  
is  a  linear  vortex  on  which  the  phase  of  the  order  parameter  is  undefined.  In  a  
real  superftuid,  there  is  a  cylindrical  core  region,  centred  on  this  line,  in  which  the  
magnitude  of the  order  parameter  varies,  approaching  zero  on  the  line.  

Similar  considerations  apply  to  our  U{I)pQ  symmetry.  In  the  early  universe  
when  the  PQ  symmetry  is  broken,  we  expect  the  axion  field  to  vary  spatially,  since  
it  is  uncorrelated  beyond  the  horizon.  These  topological  considerations  (S.128)  
indicate  that  a  random  'axion  string'  network  will.  therefore,  be  formed  [33]  just  
as  vortex  configurations  are  formed  in  superftuid  4He.  The  thickness  of  the  core  
region  is  ~ .....  f G- I  •  Roughly,  there  are  two  types  of string:  long  strings,  spanning  
the  horizon,  and  small  string  loops.  The  loops  oscillate  and  radiate  axions,  and  this  
is  the  dominant  energy-loss  mechanism  [11,34].  The  axions  are  massless  when  
they  are  emitted  and  the  emission  continues  until  they  acquire  a  mass  via  instanton  
effects  when  the  temperature  drops  to  T  .....  AQCD.  A  numerical  simulation  of  a  
random  network  of  (global)  axion  strings  has  been  performed  recently  [3S,  36].  
This  shows  that,  after  a  short  initial  period  of  relaxation,  the  network  evolves  to  
a  'scaling'  regime,  in  which  the  large-scale  behaviour  of  the  network  scales  with  
the  Hubble  radius  and  the  energy  density  is  given  by  

striq  ~IL 
(S.129) PG  =  12  

where  ~ is  a  constant  and  IL  is  the  string tension  per  unit  length.  Such  behaviour  
was  predicted  theoretically  by  Albrecht  and  Turok  [37].The  radiated  axions  have  
a  momentum  spectrum  g{k)  which  is  peaked  around  wavelengths  of  order  of  
the  horizon  scale  {k- I  '"  (41r  H)-I)  and  which  decays  exponentially  for  shorter  

wavelengths.  The  contribution  Q~I to  the  current  fractional  relic  axion  energy  
density  is  calculated  as  follows:  

m  -1.18 -2  G )Q~g ~ (0.39  ±  0.26)h  (IO-S  eV  (S.130)  

which  is  somewhat  larger  than,  but  comparable  with,  the  value  obtained  from  
the  misalignment  mechanism  if  we  take  the  rms  value  for  li;.  So  applying  the  
measured  matter  density  bound  (S.22)  requires  the  axion  mass  to  be  greater  than  
about  lO-s  eV.  as  before.  The  numerical  simulation  was  performed  on  a  2563  

lattice  but  it  has  been  noted  [38]  that  this  might  not  be  sufficient  to  observe  
logarithmic  corrections,  proportional  to  ,-2  In  t,  to  the  scaling  behaviour  (S.129).  
Such  corrections  would  have  the  effect  of  enhancing  axion  production  at  later  
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times,  thereby  reducing  the  lower  bound  on  the  axion  mass  needed  to  avoid  
overclosure.  Of  course,  if  the  reheating  temperature  after  inflation  is  lower  than  
that  of  the  PQ  symmetry  breaking,  then  axion  strings  and  the  radiated  axions  
are  washed  out  and  essentially  all  of  the  relic  axions  come  from  the  coherent  
oscillations  of the  zero  mode  discussed  earlier.  

Axions  produced  at  a  temperature  around  T  '"  AQCD  when  they  acquire  a  
non-zero  mass  are  non-relativistic  and  they  are,  therefore,  candidates  for  cold  dark  
matter  (CDM).  Studies  of large-scale  structure  formation  indicate  that  CDM  is  an  
important  component  and,  if  so,  it  gets  trapped  in  the  gravitational  potential  and  
contributes  to  the  galactic  halo.  Such  axions  might  be  detected  experimentally  
using  a  cavity  permeated  by  a  strong  static  magnetic  field  [39]  via  the  Primakoff  
process  (5.90).  When  the  cavity  frequency  is  tuned  to  the  axion  mass,  the  galactic  
halo axions convert resonantly into photons  of that frequency.  A cylindrical cavity  
of radius  1 m  has  a  lowest  TM  mode  of frequency  /  =  115  MHz,  corresponding  
to  an  axion  of  mass  ma  =  0.475  x  10-6  eV.  Experiments  using  a  tunable  cavity  
of this size have produced exclusion  zones in  the  axion  mass  versus  axion-photon  
coupling  (ma,  gayy)  plane.  All  of  these  are  normalized  assuming  that  the  local  
halo  (CDM) density is  entirely  in  the  form  ofaxions.  The conversion power  of the  
resonant  cavity  is  proportional  to  g~yy and,  until  recently.  the  power  sensitivity  
levels  were  too  high  to  bound  theoretically  favoured  models.  However.  a  recent  
experiment  at  LLNL  [40]  has  excluded  KSVZ  axions  in  the  range  

2.77  x  10-6  eV  <  ma  <  3.3  x  10-6  eV  (excluded)  (5.131)  

and  further  experiments  are  underway  at  LLNL  and  Kyoto  with  sufficient  
sensitivity  to  detect  DFSZ  axions  at  even  a  fraction  of  the  local  halo  density.  

5.4  Exercises  

1.  Verify  the  form  (5.63)  giving  the  interactions  of  the  axion  with  the  gauge  
fields  and  fermions.  

2.  Show  that  axion  decay  into  two  photons  is  described  by  the  Lagrangian  
(5.66)  with  gy  given  by  (5.69).  

3.  Show  that  axion  decay  into  an  electron-positron  pair  is  proportional  to  g;u  
where  gau  is  given  by  (5.87).  

4.  Verify  the  expression  (5.108)  for  the  final  axion  relic  abundance.  

5.5  General references   

The  books  and  review  articles  that  we  have  found  most  useful  in  preparing  this  
chapter  are:  

• 	 Peccei  R  D  1989  The  Strong  CP  Problem  in  CP  Violation  ed  C  Jarlskog  
(Singapore:  World  Scientific)  
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•  Kolb  E R and   Turner M  S 1990  The   Early  Universe  (Reading.  MA:  Addison­
Wesley)  

•  Muryama  H.  Raffelt  G.  Hagmann  C.  van  Bibber  K and   Rosenberg  L  J  2000  
Axions  and  other very   light bosons   (Review  of Particle  Properties  Groom  D  
E  et at   Particle  Data Group)   Eur.  Phys.  J.  C  15  I  

Bibliography  

[1]  Spergel  D N  et  al2003 Astrophys.   J.  Sup pi.  148  175,  arXiv:astro-phlO302209  
[2]  Gerstein G   and  Zel'dovich  Ya  B  1966 Zh.   E/csp.  Teor.  Fit.  Pis'ma  Red.  4174  
[3]  Cowsik R   and McClelland  J   1972  Phys.  Rev.  Lett.  29669  
[4]  Belavin  A  A, Polyakov   A  M,  Schwartz A  S  and  Tyupkin  Yu  S  1975  Phys.  Lett.  B  59  

85  
[5]  Baitin  D  and Love   A  1993  Introduction  to  Gauge  Field  Theory  revised edn   (Bristol:  

lOP) p   212  
[6]  Adler S  L  1969  Phys.  Rev.  1772426  
[7]  Baluni  V  1979  Phys.  Rev.  D  192227  

Crewther R.   di  Vecchia  P,  Veneziano  G and  Witten   E  1979  Plrys.  Len.  B  88  123  
[8]  Peccei  R D  and Quinn   H R  1977  Phys.  Rev.  Len.  381440  

Peccei  R D  and Quinn   H R  1977  Plrys.  Rev.  D  161791  
[9]  Weinberg  S  1978  Phys.  Rev.  Len.  40 229   

[10]  Ellis J  and  Gaillard  M  K  1979 Nucl.   Phys.  B  150  141  
[Il]  Donnelly  T W  et  al1978  Phys.  Rev.  D  18  1607  
[12]  Kandaswamy  J,  Salmonsen  P  and  Schechter J   1978  Plrys.  Rev.  D  17  3051  
[13]  Georgi  H,  Kaplan  D B  and  Randall  L  1986Phys.  Len.  B  16973  
[14]  Bardeen W  A  and 'lYe   S-H  1981  Plrys.  Len.  B  74  199  
[15]  Bardeen  W  A, Peccei   R D  and  Yanagida T   1987  Nud.  Phys.  B  279401  
[16]  Peccei  R  1989 CP   Violation  ed C   Jarlskog (Singapore:   World  Scientific) p   503  
[17]  Egli  S et  al   1989  Plrys.  Len.  B  222 533   
[18)  Groom D  E  et al   2000 Particle  Data  Group  Euro.   Plrys.  J.  C  IS  1  
[19]  Kim J   1970  Phys.  Len.  B  43  10  
(20)  Shifman M   A,  Vainshtein  A I  and Zakharov  V  I  1980 Nucl.   Plrys.  B  166 493   
[21)  Dine M.   Fischler W   and  Srednicki  M  1981  Phys.  Len.  B  104  199  
[22]  Zhitnitskii  A P  1980  SOy.  J.  Nucl.  Phys.  31  260  
[23)  Dicus D   A,  Ko1b  E  W.  Teptitz  V L  and  Wagoner R  V  1978  Phys.  Rev.  D  18  1829  
[24]  Sato  K  1978  Prog.  Theoretical  Phys.  60  1942  
[25]  Turner MS  1990   Plrys.  Rep.  197  67  
[26]  Raffelt G  G  1990 Plrys.   Rep.  198  1  
[27]  Raffelt  G G   1996  Stars  as  Laboratories  lor  FundDmental  Physics  (Chicago,  IL:  

University of  Chicago Press)   
[28]  Raffelt G  G  and Weiss   A  1995  Plrys.  Rev.  D  SI  1495  
[29J  Hirata  K  et  a/1987  Phys.  Rev.  Len.S8  1490  
[30]  Bionta  R M  et al1987  Phys.   Rev.  Len.  58  1494  
[31]  Janka H-T,   Keil  W.  Raft'elt  G G  and Seckel   D  1996  Plrys.  Rev.  Len.  762621  
[32]  Keil  W  et al   1997  Plrys.  Rev.  D 56  2419   
[33]  Vilenkin A   and  Everett A  E  1982  Plrys.  Rev.  Len.  48 1867   
[34)  Vilenkin A   and  Vachaspati  T  1987  Phys.  Rev.  D  351138  



Bibliography  17  t  

[35J  Yamaguchi  M,  Kawasaki  M  and  Yokoyama  J  1999  Phys.  Rev.  Le".  82  4578  
[36J  Yamaguchi  M  1999  Phys.  Rev.  D  60  103511  
[37J  Albrecht  A  and  Turok  N  1989  Phys.  Rev.  D  40  973  
[38]  8anye  R A  and  Shellard  E P S  1999  Tegemsee  1999,  Beyond  lhe  Desert  pp  565-72,  

arXiv:astro-phl990923I  
[39]  Sikivie  P  1983  Phys.  Rev.  Lell.  SI  1415  

Sikivie  P  1985  Phys.  Rev.  D  32  2988  
[40]  Hagmann  C  et  al  1998  Phys.  Rev.  Lell.  80  2043  



Chapter 6 

Supersymmetric dark matter 

6.1 Introduction 

The cosmological bounds on the masses of various known or hypothethical relic 
particles derive from the requirement that the total energy density of the relic 
particles X does not exceed the measured present total energy density po. In 
terms of dimension less quantities, this gives 

nx.o < no (6.1) 

where nx.o and no are defined in (5.16) and (1.41) with no given by (5.19). 
Some of the relics are known. For example, the present photon energy density 

Pr = ~ T04, with To = 2.73 K = 2.35 x 10-4 e V the present temperature of the 
cosmic microwave background, gives ny h2 ::::: 2.471 x lO-s. Thus, 

ny = 5.1 x lO-s (6.2) 

taking h = 0.71~:g; as in (5.14). Similarly, and as noted previously, the 
measured primordial deuterium and helium abundances require that the baryon 
energy density gives nbh2 = 0.019 ± 0.003. Thus, 

nb = 0.039 ± 0.004 (6.3) 

and baryons constitute not more than a few percent of the total. Relic neutrinos 
also contribute and we may invert (5.35) to obtain a contribution of 

m" 
n"ji = (6.4) 47.4eV 

for each relativistic species with m" » To. The current experimental bound for 
the electronic species from the Mainz and Troitsk tritium beta-decay experiment 
[ 1) is far more restrictive: 

m,,~ < 2.2eV at 95% CL. (6.5) 

172 DOl: 10.1201/9780367806637-6 
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Further,  this  bound  effectively  applies  to  all neutrino   species,  since  the  SuperK  
[2]  and  SNO  [3]  data  show  that  the  mass  differences  for  atmospheric  and  solar  
neutrinos are   tiny:  

l\m~.atmos ::::::  3  x  10-3  eV2  (6.6)  

l\m~.solar:::::: 7  x  10-5  eV2.  (6.7)  

Thus  the  sum  of the   neutrino  masses  is  at  most,  6.6  eV  and  likely  to  be  much  
smaller.  (When  mv  «  To,  the  relativistic  fennion  density  gives  Qv  = 0.230 y .)  

In  addition,  simulations of  structure  fonnation  in  a  neutrino-dominated  universe  
are  unable  to  reproduce  the  observed  structure.  The  best  fit  to  all  of  the  
cosmological data   [4]  gives  

Ov  <  0.015  (6.8)  

which for  three   degenerate species  implies   

mVe  <  0.23  eV  at 95%  CL.   (6.9)  

It is,   therefore, clear  that  relic   neutrinos  too constitute  only  a   small  fraction  of the  
total  energy  density.  We  might have   anticipated that   the  dominant contribution  to   
the  present energy   density  would  come  from  the  matter  comprising  the  galaxies  
and  the  contribution  of the   baryons  is  the  largest.  However,  it  is  nowhere  near  
large  enough  to  account for   the  total  energy density.   Thus,  we  may  be  confident  
that the  major  contributions  to   00 are   not from   known  sources.  In any  case,   as  we  
shall  shortly see,   there  is  strong evidence   that  there  is  a  large  amount of  invisible   
'dark matter'   in  the  universe  [5].  

The  possibility  of dark   matter  was  first  suggested  by  Kapteyn  [6)  in  1922,  
who  noted  that  its  mass  could  be estimated  from   the  velocity  distribution  of stars   
in  our galaxy.   The  strongest evidence  for   its existence  comes  from   measurements  
of rotation speeds of  spiral galaxies.  If we consider a star moving with speed  v(r)  
in  a  circular orbit  of  radius  r   outside of  a  spherically symmetric   mass  distribution  
with  a  total  mass  M (r) interior  to   r, then   

GNM(r)  = rv(r)2.  (6.10)  

The speed  v(r)  can   be  detennined for   luminous objects  such   as stars  or  gas  clouds   
by  measuring  the  Doppler  shifts  in  emission  or  absorption  lines  and  the  mass  
distribution  M (r) is   then  inferred from   (6.10).  The mass  of  a  spiral   galaxy  can be   
detennined by   taking  r  to be   the  radius  within  which  most of  the  light is   emitted.  
In  this  way,  the  average  galactic  mass  (mgaJ)  can  be  calculated.  Combining  this  
with  the  measured  number density   ngaJ  detennines the   average  energy density   

(Plum)  = ngaJ(mgaJ).  (6.1  I)  

These  measurements show   that  the  contribution of  luminous   matter is   

Olum  ~ 0.01.  (6.12)  
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In  other  words,  luminous  matter  accounts  for  less  than  I %  of  the  mass  of  the  
universe.  When  these  techniques  are  applied  to  the  rare  stars  and  neutral  hydrogen  
(HI)  clouds  beyond  the  radius  where  light  from  the  galaxy  is  emitted.  it  is  
found  that  M(r)  continues  to  increase.  reaching  a  maximum  in  the  range  150­
3oo  km  8-1  within  a  few  kpc,  and  then  remaining  constant  out  to  the  largest  radii  
at which HI clouds can be found.  If there were no matter outside  of the luminous  
region,  then  from  (6.10)  v(r)  should  fall  off  as  ,-1/2.  Thus,  the  measurement  of  
roughly  constant  values  of  v(r)  in  over  lOoo  galaxies  indicates  that  the  galaxies  
have  huge  'halos'  of  dark  matter,  with  mass  3-10  times  that  of  the  luminous  
component.  The  rotation  curve  for  our  own  Milky  Way  galaxy  is  difficult  to  
measure.  because  the  observer  is  inside  the  galaxy  but  there  is  little  doubt  that  our  
galaxy  too  is  immersed  in  a  dark  matter  halo.  Further,  by  studying  the  motion  of  
galactic  clusters  a  universal  mass  density  corresponding  to  [7]  

0",h2  ~ 0.1-0.3  (6.13)  

can  be  inferred.  In  fact,  it  was  measurements  of cluster  galaxy  dynamics  that  led  
to  the  discovery  of dark  matter  by  Zwicky  [8]  in  1933.  Recent  data  on  the  acoustic  
peaks  in  the  cosmic  microwave  background  (CMB).  combined  with  independent  
data  from  simulations  of  cluster  formation.  high-z  supernovae.  quasars.  and  the  
Lyman  alpha  forest,  give  the  best-fit  values  [4]  

00  = 1.02  ±0.02  Omh2  =  0.135~:= (6.14)  

OA  = 0.65  ±  0.05  Obh2  =  0.0224  ±  0.0009  (6.15)  

where  Om  ==  Pm  /  Pc  is  the  total  matter  contribution,  distinguished  from  the  
cosmological  constant  contribution  OA  ==  p.,.;/ Pc  =  A/3HJ,  and  Pc  ==  3M~HJ 
is  the  critical  density  defined  in  (1.37),  and  h  =  0.71~:g;. Clearly.  Om  #  Ob.  
So  there  must  be  non-baryonic  dark  matter  and  the  first  problem  is  to  identify  
its  nature.  There  is  also  a  second  problem.  which  is  to  explain  the  discrepancy  
between  the  observed  luminous  matter  density  given  in  equation  (6.12)  and  
the  calculated  baryon  density  (6.3)  required  for  the  success  of  the  primordial  
nucleosynthesis  calculation.  We  shall  have  little  to  say  about  the  latter  problem.  
save  to  note  that  it  seems  at  least  possible  that  it  can  be  solved  by  a  combination  
of dark stars.  intracluster gas and the Lyman alpha forest  [9).  

In  this  chapter.  we  first  characterize  the  general  properties  that  dark  matter  
particles  possess,  whatever  they  are.  Since  there  are  no  satifactory  candidates  
within  the  standard  SU(3)  x  SU(2)  x  U(l)  theory  of  strong  and  electroweak  
interactions,  it  is  natural  to  look  for  suitable  candidates  in  the  (minimal)  
supersymmetric  version  of  the  standard  model,  the  MSSM.  One  possibility.  that  
gravitinos  make  up  the  dark  matter,  arises  in  any  locally  supersymmetric  theory.  
It  is  studied  in  section  6.3.  However.  the  most  popular  view  is  that  dark  matter  is  
made of neutralinos.  The parameters of the MSSM that control the mass and other  
properties of the neutralino are detailed in  section 6.4. In the following section,  
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we  discuss  the  bounds  that  can  be  put  on  the  neutralino  mass  using  cosmological  
data  and  also  the  constraints  on  the  parameters  of the  MSSM  that  arise  from  other  
data  whose  theoretical  prediction  depends  upon  these  parameters.  We  discuss  the  
prospects for the experimental detection  of (neutralino) dark matter  in  section 6.6.  

6.2  Weakly  interacting  massive particles  or  WIMPs   

To  have  survived  until  the  present  epoch,  any  (non-baryonic)  dark  matter  particles  
must  either  be  stable  or  have  a  lifetime  comparable  with  the  present  age  of  the  
universe.  Further,  if  the  dark  matter  particles  have  electromagnetic  or  strong  
interactions,  they  would  bind  to  nucleons  and  form  anomalous  heavy  isotopes.  
Such  isotopes  have  been  sought  but  not  found  [10].  Thus,  the  dark  matter  
particles  can,  at  best,  participate  in  weak  (and  gravitational)  interactions  or,  at  
worst,  only  in  gravitational  interactions.  One  obvious  possibility  satisfying  the  
foregoing  constraints  is  that  the  dark  matter  consists  of  neutrinos.  However,  
we  have  already  noted  that  the  present  data  on  neutrino  masses  (from  tritium  
decay,  atmospheric  and  solar  neutrino  experiments)  show  that  although  neutrinos  
might  barely  account  for  the  inferred  mass  density  (5.22)  or  (6.14),  simulations  
of galaxy  formation  and  cluster  formation  require  cold  dark  matter.  That  is,  the  
dark  matter  is  made  of  weakly  interacting  massive  particles  (WIMPs).  No  such  
particles  exist  in  the  standard  model  but  they  do  in  its  enlargement  to  the  minimal  
supersymmetric  standard  model  (MSSM).  

We  can  estimate  the  relic  density  of  WIMPs  using  the  same  techniques  as  
those  used  for  relic  neutrinos  in  section  5.2.  The  difference  is  that  the  equilibrium  
abundance  for  a  cold  (i.e.  non-relativistic)  fermion  species  X  is  obtained  from  
(5.1)  by  taking  the  limit  T  «  m  x.  The  result  is  

mXT)3/2 
nx.cq  =  gx  ( -- e-mx/T  (6.16) 21f  •  

Roughly  speaking,  freeze-out  of  such relics  occurs  when  their  annihilation  rate  
r  A  becomes  equal  to  the  Hubble  rate  H.  The  annihilation  rate  is  given  by  

r  A  = nX.eq(UA  Ivl)  (6.17)  

where  U A  is  the  annihilation  cross  section,  v  is  the  relative  velocity  of  the  
annihilating  WIMPs,  and  ( ... )  denotes  an  averaging  over  a  thermal  distribution  
of velocities of each  particle  at  the  decoupling (freeze-out) temperature  Tdcc.  The  
Hubble  rate  is  

/81fGNP  T2  (6.18) H  =  3  =  1.66.Jg •. T  mp'  

The  abundance  YX.Tdoc  of  X-particles  at  freeze-out  is,  therefore,  given  by  

_  nX.cq.Tdec  Hdec Y X.Tdcc  =  =  --- (6.19)  
Sdec  sdcc(uAlvl)  
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where  
_  211'2  r.3  

Sdec  - 45  g.,S,TdeI:  dec 
 (6.20) 

is  the  entropy  density  at  freeze-out.  with  g.,S,T  defined  in  (5.10)  As  before,  this 
 
gives  the  current abundance   Y x ,0.   Equating (6.17)  and   (6.18) then  yields   

Px,O  So  
nxo ==   - =  Yxo-mx 

,  Pc  '  Pc  
mx  So  Hdec  

=----­ (6.21)  
(0',4  Ivl)  Pc  Sdec  

=  mx  I  (2 x   1O-27cm3s- I )  •  (6.22)  
Tdec  Jg.,TdeI:  (O',4lvl)  

The  proportionality  of  nx,o  to  the  inverse  of  (0',4  Ivl)  means  that  the  relic  
abundance  is  reduced  as  0',4  increases  and  this  might  have  been  anticipated:  the  
more  efficiently  annihilation  proceeds,  the  fewer  relics  remain.  Taking  gx  = 2,  
the  freeze-out  temperature  satisfies  

mx)-1/2  T.  mxmp ( - emxl  del:  = 0.076(0',4lvl)  ==  K  (6.23)  
~« Jg.,~ 

which  may  be  solved  iteratively  

mx  ~lnK+!lnlnK. (6.24)  
Tdec  

For a   typical  value  g.,TdeI:  = 60  and a   typical  weak cross  section  

a2  
(0',4  Ivl)  = c~ =  c  (100  Gev)2 2.5  x  10-27  cm3  S-I  (6.25) 

81fmx  mx  

where c  is  of  order  unity,   this gives   

mx  ~ 22  + In   c - In  
Tdec 

(100 m~v) .  (6.26)  
 

Thus,  
6  x  1O-27cm3s-1  

nxo""------ (6.27) 
,- (O',4lvl)  

and,  using (6.22),   a  typical  weak cross  section  (6.25)  gives   

n  _  2.3  (  mx  )2  (6.28) x.o  - c  lOO  GeV  

remarkablycIoseto (6.14)formx   ~ lOOGeVsinceh2  ~!. 
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The  foregoing  analysis  shows  that  the  dark  matter  might  well  be  WIMPs  but  
there  remains  the  question  of  what  the  WIMPs  actually  are.  Since  there  are  no  
satisfactory  candidates  within  the  standard  model.  we  must  investigate  plausible  
extensions  of  it.  The  most  favoured.  which  has  been  studied  in  great  detail  in  
recent  years,  is  the  MSSM.  (See.  for  example.  [11  D.  We  shall  say  more  about  the  
MSSM  in  section  6.4.  First  we  discuss  the  possibility  that  dark  matter  is  made  of  
gravitinos,  particles  that  occur  in  any  locally  supersymmetric  theory.  

6.3  The  gravitino problem   

In  a  supersymmetric  theory,  all  particles  have  an  associated  superpartner,  called  a  
'sparticle', whose spin differs  by ! from that of the original particle.  In a (locally  
supersymmetric)  supergravity  theory,  the  sparticle  associated  with  the  (spin-2)  
graviton  has  spin  ~ and  is  called  the  'gravitino'.  When  supersymmetry  is  broken,  
the  gravitino  acquires a  non-zero  mass  (see  chapter 5  of [11],  for  example)  

m3/2  = e Go/ 2mp  (6.29)  

where  Go  is  the  expectation  value  of  G  in  the  physical  vacuum,  with  G  defined  in  
(2.144),  and  mp  = G"I/2  =  1.22  X  1019  GeV  is  the  Planck  mass.  Ifgravitinos  
have  survived  until  the  present  epoch,  then  their  energy  density  Pl/2.0  could,  in  
principle,  dominate  but  not  exceed  [ 12]  the  present  total  energy  density  PO  of the  
universe.  Thus.  

03/2  <  00  (6.30)  

where  00  is  defined  in  (1.41)  and  

n  P3/2.0 
U3/2=  --.  (6.31)  

Pc  

As  for  neutrinos,  we  can  use  this  to  bound  m3/2.  Since  gravitinos  interact  only  
gravitationally,  their  interaction  rate  

r3/2.int  .....  G~T S  .....  ~ (6.32)  
m4 p  

just  on  dimensional  grounds.  They  decouple  when  

T2  
r3/2.int  =  H  .....  m  p  (6.33)  

which  occurs  when  T  .....  m  p  and  while  they  are  still  relativistic.  After  decoupling,  
the  number of gravitinos  per comoving  volume  is  constant so,  as  in  (5.24),  

Y3/2.dec  =  Y3/2.0.  (6.34)  
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Thus,  as  in  (5.33),  

n  u2 =  8{(3)  g3/2effg.S,To   G  T,3  
""3/21"1:0  3  N  0  m3/2  (6.35)  

1f  g.S.T ..  

where  g3/2,eff  = i   x 4,  since the gravitino has  spin-!. Putting all  of this together  
gives  

m3/2  = n3/2h2g.S.T  .. (4.4eV)  ~ 1 keY  (6.36)  

taking  g.S.T .. .....  200  and  using  the  value  (1.42)  for  no.  This  is  far  smaller  
than  the  ~ \0 TeV   scale  needed  to  protect  the  hierarchy  and  to  give  TeV-scale  
masses  to the   sparticle  spectrum,  remembering  that  m3/2  controls the   size  of the   
supersymmetry-breaking masses   for matter.   

A  more  likely  scenario  is  that gravitinos  are   heavier but  decayed   before  the  
present epoch.   The  fastest  decay  mode  of the   gravitino  is  into  a  standard  model  
particle and   its  supersymmetric partner,   with  rate  

3  m3/ 2  
r3/2.1D1X  ~ -2-'  (6.37)  

mp  

When  the  temperature  T  .....  m3/2,  the  expansion  rate  H  ~ m~(2/mp. which  
is  faster  by  a  factor  m p /   m3/2.  This  means  that  the  equilibrium  condition  
r  ~ H  can  only  be  reached  at  temperatures  far  below  m3/2  and,  at  these  
temperatures,  collision  processes  are  too  weak  to  produce  gravitinos.  So  the  
gravitino population  can   only be   reduced  by decays.   Until  they  decay,  the  cosmic  
energy density   is  dominated by  gravitinos  with   energy density   

3{(3)  geT)  m3/2T3  (6.38) P3/2  = -;rr  g(Tdec)  

where  geT) is   the effective number of  massless degrees of  freedom at temperature  
T.  The expansion  rate   

H  = t;  
1/2 

811'  P3/2 
 (6.39) 
3  mp  

becomes equal   to  the  decay  rate  r3/2 when   T  ~ T3/2,  where  

(2 2 /
T3/2  ~ 1l'g(Tclei:)  1/3  r3/2mp )1 3  

(6.40) 
(8{(3)g(T3I2J  m3/2  

When  they  decay  the  energy  is  thermalized  and  reheats  the  universe  to  a  
temperature  

-rl (90{(3»1/4  (m3/2T.3  )114 
~3/2 

 
~ 3

/2  (6.41) 
1l'  g(T3/2)  
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Using (6.40),  this   gives  

,  (45g (Tdec)  )1/4 
T3/2  ::::::  3  2  r3/2m p.  (6.42) 

411'  g  (T3/2)  
J

If  we  use  the  fastest  decay  rate  (6.37),  we  find  that  T3/2  <  To  '"  3 K   if  
m3/2  ~ 10  MeV.  The  increase  in  temperature after  reheating   

T.' 3/2  >  45 1/4J2('(3)1/311'-13/12g (T3/2)g-1/12(Tdcc)  (m 
_P 

)1/6  
(6.43)  

~ mm  
results  in  a  large  increase  in  the  entropy density,   by  a  factor  (mplm3/2)1/2  since  
s  <X  T3.  So if  the   gravitinos  decay  after  nucleosynthesis,  the  baryon  number  to  
entropy ratio  n  B Is  during nucleosynthesis  must   have  been  much  higher than   now.  
This  leads  to  too  much helium  and  not  enough  deuterium  [13].  To  avoid  these  
problems,  we  require that   T3/2  >  0.4 MeV,   so  that any   previously formed   helium  
nuclei  are  broken,  the  neutron-ta-proton ratio   is  restored  to  its  equilibrium  value  
and  nucleosynthesis  restarts.  If we  use  the  fastest  decay  rate  (6.37)  in  (6.42),  this  
gives  

m3/2  ;::  10  TeV  (6.44)  

which  might,  just,  be  consistent  with  solving  the  hierarchy  problem.  Whether  
or  not  the  maximal  decay  rate  (6.37),  associated  with  the  decay  to  a  particle  and  
sparticle,  actually  occurs  depends  on  the  details  of  the  supergravity  model  used.  
For  example,  if  the  gravitino  is  the  lightest  supersymmetric  particle  (LSP),  then  
if  it  decays  it  can  only  decay  to  non-supersymmetric  particles,  with  a  decay  rate  
less  the  maximal.  This  decreases  both  T3/2  and  T3/2'  thereby  exacerbating  the  
problem.  

6.4  Minimal supersymmetric  standard  model   (MSSM)  

Although  it  is  not  required  theoretically,  it  is  customary  to  impose  an  'R-parity'  
invariance  on  the  supersymmetric  standard  model  to  ensure  the  absence  of  fast  
proton  decay.  The  quantity  R  is  defined  as  R  =  (_1)3(B-L)+2S,  where  B  is  
the  baryon  number,  L  is  the  lepton  number  and  S  is  the  spin.  It  is  assumed  to  
be  multiplicatively  conserved  in  all  interactions.  Then  the  most  general  MSSM  
has  a  total  of  124  independent  parameters  [14].  These  are  comprised  of  three  
gauge  coupling  constants  (gl,2,3),  three  gaugino  masses  (MI.2,3)  and  two  gaugino  
phases,  four  HiggslHiggsino  sector  mass  parameters  (m~", m~d' B,  IJ.)  and  one  
phase,  nine  fermi on  masses,  21  scalar  squark  and  slepton  masses,  39  mixing  
angles  and  41  phases  and  (j  (the  QCD  9-parameter  discussed  in  section  5.3.1),  
This  model  is  sometimes  referred  to  as  MSSM-124  [15].  In  contrast,  the  
standard  model  has  'only'  19  parameters:  the  three  coupling  constants,  two  Higgs  
parameters  (m~, v),  nine  fermion  masses,  three  mixing  angles  and  one  phase,  



180  Supersymmetric  dark  matter  

and  9.  Since  there  are  two  Higgs  doublet  chiral  superfields  HII  and  Bd  in  the  
MSSM,  there  are  two  VEVs,  Vu  and  Vd.  The  combination  v~ +  v~ is  fixed  by  
the  measured  value  of  mz  and  is,  therefore,  not  a  free  parameter  but  the  ratio  
tan  fJ  ==  VII/Vd  is  a  free  parameter.  The  MSSM  has  five  physical  Higgs  particles  
of  which  two  (H,z)  are  charged,  two  (hO,  HO)  are  neutral  scalars  and  one  (Ao)  

is  a  neutral  pseudoscalar.  The  masses  are  all  fixed  in  terms  of  the  (known)  gauge  
coupling  strengths  and  three  parameters,  two  of  which  (lL,  tan  P)  have  already  
been  defined.  Without  loss  of generality,  the  third  may  be  taken  to  be  mA.  Apart  
from  9  and  the  CKM  mixing  angles  and  phase,  the  unknown  parameters  of  the  
MSSM  therefore  consist  of  63  masses  and  mixing  angles  and  43  phases.  Even  
if  all  of  the  phases  are  set  to  zero,  it  is  still  not  feasible  to  explore  the  remaining  
parameter  space  (MI.2.3,  11-,  tan  p,  mA,  21  scalar  squark  and  slepton  masses  and  
36  mixing  angles).  

The  number  of  parameters  is,  therefore,  drastically  reduced  by  making  
further  assumptions.  In  the  low-energy  approach  [16],  special  phenomenolgically  
viable  points  in  the  parameter  space  are  selected.  For  example,  the  five  scalar  
(squark  and  slepton)  symmetric  3  x  3  mass  matrices  and  the  three  trilinear  
coupling  A-matrices  might  be  assumed  to  be  generation  independent  or  that  they  
are  flavour-diagonal  in  a  basis  where  the  quark  and  lepton  mass  matrices  are  
diagonal.  Neither  of  these  has  any  strong  theoretical  motivation.  Alternatively,  
in  the  high-energy  approach  that  we  shall  follow,  the  parameters  of  the  MSSM  
are  treated  as  running  parameters.  In  other  words,  the  parameters  'run'  or  evolve  
with  the  renormalization  scale  in  a  way  determined  by  the  renormalization  group  
equations.  Then  a  structure  is  imposed  on  the  parameters  at  some  high  energy  
scale.  This  would  be  the  case  if  there  is  an  underlying  GUT  symmetry,  for  
example.  In  such  a  model,  it  is  assumed that  the  gauginos  all  have  a  common  
mass  m 1/2  at  some  (a  priori  unknown)  unification  scale  m x:  

MJ  (mx)  =  M2(mx)  =  M3(mx)  =  m1/2.  (6.45)  

The  gaugino  masses  at  the  electroweak  scale  are  determined  using  renormaliza­
tion  group  equations  and  at  the  electroweak  scale  their  ratios  are  determined  by  
the  gauge  coupling  strengths:  

M3  a3  MI  Sal  
-=- -=- (6.46) 
M2  a2  M2  3a2  

where  a3  ==  gi/41r  etc.  Similarly,  it  is  also  assumed  that  all  scalars,  except  
possibly  the  Higgs  soft  masses  squared  mt2'  have  a  common  squared-mass  m~ 
and  that  the  trilinear  cofficients  have  a  common  value  A,  at  the  unification  scale.  

m2
Q_  (mx)  =  m~e (mx)  = mt(mx)  = mal3  (6.47) 

L  L  Gi  

mi(mx)  =  m~ (mx)  =  m~13 (6.48)  

All  =  Ad  =  A.  = A13.  (6.49)  
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This  happens  (in  supergravity  models)  if  the  origin  of  the  supersymmetry  
breaking  is  a  'hidden'  sector  which  shares  only  gravitational  interactions  with  
the  'observable'  sector  that  we  inhabit.  (The  unification  scale,  as  well  as  the  
value  of  the  unified  gauge  coupling  strength,  is  determined  from  the  measured  
low-energy  values  of  the  coupling  constants  using  the  renormalization  group  
equations.)  An  advantage  of  this  approach  is  that  one  of  the  diagonal  Higgs  
mass-squared  parameters  is  typically  driven  negative  by  the  renormalization  
group  running,  so  electroweak  symmetry  breaking  is  thereby  generated  radiatively  
and  the  scale  at  which  this  happens  is  intimately  connected  to  the  low-energy  
supersymmetry  breaking.  The  minimal  supergravity  (mSUGRA)  model  starts  
with  seven  parameters  (if  we  allow  for  a  non-minimal  Kabler  potential),  namely  
mr,  m~, IL{mx),  A,  B,  m1/2,  m5.  Using  the  re normalization  group  equations,  
these  determine  mz,  tan  /J  (and  m~): it  is  customary  to  choose  tan  /J  as  an  input  
parameter  and  mz  is,  of  course,  fixed.  Then  IILI  and  B  are  outputs  and  the  
remaining  unknowns  are  m~, m~. ~(IL(mx», tan/J,  m1/2,  moo  When  mr  = m~ =  
m5,  the  model  is  called  the  'constrained'  MSSM  or  CMSSM.  

Since  R  =  + I  for  all  particles  in  the  standard  model  and  R  =  -1  for  all  
of  their  supersymmetric  partners  (sparticles),  it  is  easy  to  see  that  the  lightest  
supersymmetric  particle  (LSP)  must  be  stable.  To  be  a  WIMP  candidate,  the  LSP  
must  also  be  a  colour-singlet  and  electrically  neutral  and  there  are  relatively  few  
sparticles  with  these  properties.  One  posiibility  is  a  sneutrino  ii.  However,  this  
possibility  has  been  excluded.  An  accelerator-based  limit  from  the  'invisible'  
width  of  the  Z  boson  requires  mjj  ;::  44.7  GeV  [17]  but,  in  this  case,  direct  relic  
searches  in  low-background  experiments  require  mjj  ;::  20  TeV  [18].  Another  
possibility  that  arises  in  supergravity  models  is  the  gravitino,  which  is  essentially  
undetectable.  Also,  as  we  saw  in  section  6.3,  gravitino  dark  matter  might  raise  
theoretical  problems  that  supersymmetry  is  supposed  to  have  solved.  However,  in  
most  supergravity  models,  the  gravitino  is  not  the  LSP  and  is  unstable.  The  most  
popular  candidate  by  far  is  that  the  LSP  is  a  neulralino  [ 19].  

6.S  Neutralino dark  matter   

There  are  four  neutralinos  x2(n  =  1,2,3,4)  in  the  MSSM,  each  of  which  is  a  
linear  combination  of  the  four  R  =  -I  Majorana  fermions:  the  Wino  W3 ,  the  
partner  of  the  SU(2)L  gauge  boson;  the  Bino  8,  partner  of  the  U(l)y  gauge  
boson;  and  the  two  neutral  Higgsinos  Hu  and  Hd.  Thus,  

o - -3  - ­
Xn  =  NlnB  +  N2n  W  +  N3nHu  +  N4n Hd  (n  =  1,2,3,4)  (6.50)  
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and  the  coefficients  Nin  (;  =  I,  2.  3,  4)  are  the  normalized  eigenvectors  of  the  
neutralino  mass  matrix  

MI  o  -mzc/lsw  mZSfJSW)  
(  M2  mzcllcw  -mzsllcw  (6.51) 

Mx  =  -mZ~IlSW o mzcllcw  -IJ.  
mzsllsw  -mzsfJcw  -IJ.  0  

where  cll  ==  cosp,  sll  ==  sinp,  Cw  ==  cos9w  and  Sw  ==  sin9w.  The  mass  
eigenvalues  are  conventionally  labelled  in  ascending  order,  so  xP  is  the  lightest  

neutralino  and  x2  the  heaviest.  Besides  the  (known)  parameters  mz  and  8w  that  
appear  in  the  standard  model,  the  neutralino  mass  matrix  involves  four  of  the  
further  63  parameters  that  specify  the  (fairly)  general  MSSM  discussed  earlier.  
These  are  MI.2,  the  (soft)  masses  of  the  U(1)y  and  SU(2)L  gauginos,  and  
the  Higgsino  mixing  parameter  IJ..  In  mSUGRA  models,  (6.46)  holds  and  the  
neutralino  masses  and  mixing  angles  are  determined  by  only  three  parameters.  

The  question  to  be  addressed  then  is  whether  for  certain  values  of  these  
limited  parameter  sets  the  MSSM  has  the  neutralino  xP  as  the  LSP  and,  if  so,  
whether  the  predicted  relic  density  is  consistent  with  the  observational  data  (6.14).  
To  answer  the  latter  question,  the  cross  section  for  neutralino  annihilation  must  
be  calculated  in  the  MSSM  and  then  used  to  calculate  the  relic  density  which  
is  compared  with  the  observational  data  on  cold  dark  matter.  Subtracting  the  
baryonic  contribution  Ob  from  the  total  matter  contribution  Om  in  (6.14)  gives  
the  2n  range  for  the  cold  dark  matter  density  satisfying  

0.094  <  OCDMh2  <  0.129.  (6.52)  

Before  discussing  these  calculations,  we  should  note  that  a  precise  determination  
of the  relic  density  requires  the  solution  of the  Boltzmann  equation  governing  the  
evolution  of  the  number  density  n x'  The  estimate  (6.27)  is  a  fairly  good  estimate  
when  C1A  Ivl  is  approximately  constant,  independent  of  v.  Since  the  neutralinos  
are  non-relativistic,  we  may  generally  expand  the  annihilation  cross  section  as  

C1Alvl  =a+bv2 +  ...  (6.53)  

where  the  a  term  receives  contributions  only  from  s-wave  scattering,  the  b-term  
from  s- and  p-waves,  and  so  on.  If a  »  b,  then  C1A  Ivl  is  indeed  approximately  
constant.  However,  as  we  shall  see,  this  is  often  a  poor  approximation  because  
the  dominant  annihilation  channel  has  the  s-wave  suppressed  because  of  CP­
invariance  considerations.  Thus,  the  p-wave  is  dominant  and  the  estimate  (6.27)  of  
the  relic  abundance is  a  poor approximation.  The true  abundance can  be  computed  
by  a  numerical  integration  of the  Boltzmann  equation  but  an  improved  analytical  
approximation  can  also  be  found  by  solving  in  both  the  early- and  late-time  limits  
and  then  matching  the  two  solutions  near  freeze-out.  The  result  is  [20]  

so  
(6.54) °x.o  =  Yx.o  Pc  mx  
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with  the  present  neutralino  abundance  YlC.o  given  by  

3.785  I (mx  ) 
YlCo=  - (6.55) 

•  .jg •• Tdl:cmpmlC  Tdec  a  +  3(b  - a/4)Td«/m x  

and  the  freeze-out  temperature  satisfying  

mlC  =  In[0.0764mp(a  + 6bTd«/m lC)c(2  + c)mlC(g •• Tdl:cmlC/Td«)-1/2]  (6.56) 
Tdec  

which  can  be  solved  iteratively;  c  is  a  numerical  constant  of  order  unity  
determining  when  the  early- and  late-time  solutions  are  matched:  c  ::::  i  typically  
gives  a  5-10%  precision.  In  special  circumstances  this  estimate  can  be  wrong  
by  factors  of  two  or  more.  These  are  (i)  when  the  annihilation  occurs  near  an  
s-channel  pole;  (ii)  when  the  annihilation  occurs  near  a  mass  threshold;  and  (iii)  
when  there  is  'co-annihilation',  i.e.  when  there  is  another  particle  (X')  (e.g.  a  
squark)  with  a  mass  that  only  slightly  exceeds  m lC ,  and  the  X  can  be  converted  to  
a  X'  via  scattering  from  standard  model  particles.  If the  annihilation  cross section  
for  the  X's  is  larger  than  that  of  the  xs,  then  the  abundance  of  both  is  controlled  
by  the  annihilation  of  the  heavier  and  more  strongly  interacting  particle.  These  
special  cases  are  important  in  practice  and  allow  certain  regions  of  the  MSSM  
parameter  space  that  would  otherwise  be  forbidden.  

The  coefficients  a  and  b  in  (6.53)  are  bounded  above  by  partial-wave  
unitarity  arguments,  with  the  bounds  being  of  order  m x'  essentially  on  
dimensional  grounds.  This  leads  to  a  model-independent  lower  bound  on  the  
relic  abundance  [21]  

m  )2  (6.57) f2 lC .o  ~ (200;eV  .  

Using  the  upper  bound  in  (5.22)  then  gives  mlC  $  100  TeV.  Of  course,  
in  the  MSSM  models  with  which  we  are  concerned,  the  cross  sections  are  
proportional  to  a;m,  so  the  largest  cosmologically  acceptable  WIMP  mass  will  
be  reduced  by  a  factor  of  aem  ......  10-2  from  this  most  conservative  bound.  
Thus,  in  supersymmetric  models,  we  expect  m lC  $  I  TeV  to  be  required  by  the  
cosmological  constraint.  

The  calculation  of  the  annihilation  cross  section  in  the  MSSM  is  
straightforward  in  principle  but  quite  complicated  in  practice  and  we  shaH  only  
comment  on  the  salient  features.  The  most  important  channels  for  neutralino  
annihilation  are  those  that  appear  in  lowest  order  (tree-level)  perturbation  theory,  
see figure 6.1.  These are annihilation into a pair  of fermions  

x?x?  -+  ji  (/=q,l,v)  (6.58)  

and  into  a  pair  of bosons  

X?X?  -+  W+W-,  ZOZO,  W±H~, ZOAo,  ZOHo,  ZOho,  H+H­

(6.59)  
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Figure  6.1.  Feyman  diagrams  for  neutralino  annihilation  processes:  Xn  is  any  of  the  
neutralino  or  (in  the  t-channel)  chargino  states;  h  is  the  lightest  (neutral)  Higgs  scalar,  
H  is  the  other  neutral  Higgs  or  charged  Higgs;  A  is  the  pseudoscalar;  f  is  a  fermi  on  and  f  
is  the  corresponding  sfermion.  (Not  all  processes  are  allowed.)  
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and  all  three  pairs  from  AO,  HO,  hO.  
Analytic  expressions  for  the  a  tenns  for  all  of  these  processes  are  compact  

but  the  b  tenns  are  very  involved  [22].  Neutralinos  are  Majorana  fermions  and  
are,  therefore,  their  own  antiparticles.  This  means  that,  in  an  s-wave  state,  the  two  
neutralinos  must  have  their  spins  oppositely  directed  because  of  Fenni  statistics.  
Therefore,  if  the  neutralinos  annihilate  to  a  fermion  (f)-antifermion  pair  <I>,  
then  f  and  j  must  also  have  their  spins  antiparallel,  and  this  implies  that  the  
amplitude  acquires  a  factor  m f  to  account  for  the  helicity  flip.  Another  way  
to  see  this  is  to  note  that  the  initial  s-wave  xfxf  state  has  CP  =  -I,  so  CP­
invariance  requires  that  the  final  state  also  has  C  P  =  -I.  Annihilation  into  light  
fermion  pairs  will  always  be  kinematically  allowed  but  the  previous  argument  
shows  that  the  s-wave  contribution  to,  and  therefore  the  a  term  in,  the  annihilation  
cross  section  is  proportional  to  m}/mi.  Thus,  annihilation  into  light  quarks  and  
leptons  is  negligible  compared  With  annihilation  into  c,  band  t-quark  pairs:  the  
latter  occurs  only  when  m x  >  m,  and  dominates  all  other  channels  when  it  is  
open.  CP-invariance  also  affects  other  amplitudes.  For  example,  annihilation  
into  Higgs  bosons  can  be  important  when  such  channels  are  open.  However,  the  
s-wave  amplitudes  for  the  final  states  hOhO,  HO HO,  HOhO,  AO AO,  H+  H- are  
identically  zero  because  of  CP-invariance:  the  same  is  true  of  the  zO A 0  final  
state.  

The  allowed  parameter  space  is  restricted  by  other  data  [23]  besides  the  
cosmological  bounds  (5.22).  Specifically,  the  LEP  bound  on  mh,  and  b  -.  sy  
data,  both  force  the  parameter  mI/2  to  larger  values,  while  the  BNL  E821  
measurement  of the  g  - 2 factor  of the  muon  [24]  favours  relatively low  values  of  
mo  and  m 1/2,  at  least  for  IL  >  O-the  actual  bounds  are  dependent  on  tan  {J.  There  
is  also  the  requirement  that  the  neutralino  ;s  the  LSP  and  that  the  parameters  allow  
radiatively  driven  electroweak  symmetry  breaking.  The  current  position  seems  to  
be  [25]  that  the  MSSM  can  simultaneously  satisfy  all  of  these  constraints.  In  the  
most  constrained  model,  the  CMSSM,  there  is  a  'bulk'  region  in  the  (m  1/2,  mol  
plane  with  relatively  low  values  of  mo  and  m 1/2  in  which  both  the  cosmological  
and  the  non-cosmological  constraints  are  satisfied,  see  figure  6.2  taken  from  [25].  
In  this  region,  supersymmetry  is  relatively  easy  to  detect  at  coJliders.  The  
constraints  deriving  from  the  precision  WMAP  data  have  substantially  reduced  
the  size  of  this  region.  The  bulk  region  is  essentially  defined  by  using  the  
expression  (6.54)  and,  in  this  region,  the  neutralino  is  essentially  the  Bino  (B),  
i.e.  NIO  »  Nzo,  N30,  N4{)  in  (6.50).  In  this  case  the  annihilation  proceeds  mainly  
via  t-channeI  sfermion  exchange.  

Extending from  the bulk region to larger values  of m 1/2  is a co-annihilation  
'tail',  where  the  neutralino  LSP  is  almost  degenerate  with  the  next-to-Iightest  
sparticle,  usually  the  stau  i.  At  larger  values  of  mo,  close  to  the  region  where  
radiative  electroweak  symmetry  breaking  is  no  longer  possible,  there  is  a  'focus­
point'  region  in  which  the  neutralino  has  a  larger  Higgsino  component,  i.e.  N30  or  
N4{)  in  (6.50)  are  non-negligible.  Lastly,  when  both  mo  and  m 1/2  are  large  there  
may  be  a  'funnel'  where  rapid  direct-channel  annihilations  via  the  A  and  H  Higgs  
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Figure  6.l.  The  ranges  of m  x.  allowed  by  cosmology  and  other  constraints.  for  (a)  IL  >  0  
and  (b)  IL  <  O.  Upper  limits  without  (upper  solid  line)  and  with  (dashed  line)  the  g",  - 2  
constraint  are  shown  for  IL  >  0:  the  lower  limits  are  shown  as  lower  solid  lines.  Note  the  
sharp  increases  in  the  upper  limits  for  tan  fJ  ~ 50.  IL  >  0  and  tan  fJ  ~ 35.  IL  <  0  due  to  

the  rapid-annihilation  funnels.  Also  shown  a.'i  dotted  lines  are  the  h  and  X±  masses  at  the  
tips  of the  co-annihilation  tails.  
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boson  poles  occurs.  For  IL  >  0,  the  neutralino  mass  is  constrained  to  satisfy  

108  GeV  ~ mx  ~ 370  GeV  (6.60)  

with  the  minimum  value  occurring  at  tan  fJ  =  23.  For  IL  <  0,  there  is  no  
compatibility  with  the  g  - 2  data  when  the  LEP  data  are  used  Thus,  IL  >  0  is  
clearly  favoured  but  if the  g  - 2  data  are  excluded  the  corresponding  bounds  are  

160  GeV  ~ mx  ~ 430  GeV.  (6.61)  

It  is  beyond  our  scope  to  discuss  the  status  of  the  CMSSM  in  any  further  detail  
and  the  interested  reader  is  referred  to  [25,26].  The  main  point  is  that  the  MSSM  
and  even  the  CMSSM  are  consistent  with  all  current  data  and  have  a  neutralino  
with  mass  in  the  range  (6.60).  In  the  absence  of  new  theoretical  motivation  for  
particular values  of the  parameters,  the  most urgent need  is  for more experimental  
data.  One  way  to  obtain  this  is  to  detect  neutralino  dark  matter  and  to  ascertain  its  
properties.  

6.6  Detection  of dark  matter  

The  most  direct  signal  for  neutralino  dark  matter  would  be  to  observe  its  scattering  
from  nuclei  in  a  detector.  By  fitting  both  the  luminous  and  dark  matter  to  the  
measured  rotation  curve  in  our  galaxy,  the  dark  matter  density  at  the  position  of  
the  solar  system  is  found  to  be  of  order  0.3-0.7  GeV  cm-3.  If  the  halo  of  the  
Milky  Way  consists  of  WIMPs,  then  this  means  that  hundreds  to  thousands  of  
them  pass  through  every  square  centimetre  each  second.  For  a  typical  neutralino  
with  mx  '"  100  GeV  scattering  from  a  xenon  nucleus  with  mXe  '"  130  GeV,  
with  a  typical  WIMP  speed  ii  - 270  km  s-I ,  the  nuclear  recoil  energy  is  below  
100  keY  (exercise  3).  This  energy  is  transferred  to  atomic  electrons  and  produces  
detectable  ionization.  With  a  typical  MSSM  cross  section,  assuming  coherent  
interaction  with  the  xenon  nucleus,  this  gives  an  event  rate  of  less  than  I  kg-I  
day-I.  This  is  about  106  times  lower  than  the  ambient  rate  from  background  
recoils  due  to  gammas  from  the  surrounding  natural  radioactivity.  Nevertheless,  
it  is  feasible  to  distinguish  between  the  two  because  the  rate  of  energy  loss  
with  distance  (dEldx)  is  a  factor  of  10  lower  for  nuclear  recoils.  However,  
any  background  neutrinos,  produced  by  cosmic-ray  muons  for  example,  produce  
nuclear  recoils  that  are  indistinguishable  from  WIMP  recoils.  Thus,  the  detector  
must  be  shielded  from  the  muons  by  placing  it  deep  underground.  The  velocity  
of  the  earth  through  the  galactic  halo  varies  during  the  year  as  the  earth  orbits  
the  sun.  This  leads  to  an  annual  modulation  of  the  dark  matter  event  rate,  with  a  
maximum  each  year  on  2nd  June  ±  1.3  days  when  the  earth's  motion  is  aligned  
with  the  sun's  motion  around  the  galactic  centre  and  a  minimum  six  months  later.  
Due  to  the  high  inclination  of  the  earth's  orbital  plane,  this  only  amounts  to  a  5­
7%  change  in  the  mean  recoil  rate.  This  annual  modulation  is  the  signature  sought  
by  all  of  the  current  detectors  (DAMA,  ZEPLIN-I,  EDELWEISS  and  CDMS).  
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However,  it  is  possible  that  the  much  larger  low-energy  background  might  be  
subject  to  other  modulating  effects.  The  direction  of  the  WIMP  'wind'  felt  by  
the  detectors  is  strongly  peaked  in  the  direction  opposite to  the  solar  motion,  so  
the  recoil  directions  will  be  strongly  peaked  in  the  same  direction.  If  observed,  
this  feature,  combined  with  the  annual  modulation,  would  be  the  most  convincing  
demonstration of the  existence  of WIMPs.  

6.6.1  Neutralin~nucleon elastic scattering   

If  WIMPs  solve  the  dark  matter  problem,  they  must  have  some  small  but  finite  
coupling  to  ordinary  matter-otherwise,  they  would  not  have  annihilated  in  the  
early  universe  and  would  be  overabundant  today.  By  crossing  symmetry,  the  
amplitude  for  WIMP  annihilation  into  a  quark-antiquark  pair  is  related  to  the  
elastic  scattering  of  the  WIMPs  by  quarks.  Thus,  we  expect  that  WIMPs  will  
have  a  small  coupling  to  nuclei  and  may,  therefore,  be  detectable  by  nuclear  
scattering.  The  calculations  are  considerably  simplified  because  the  WIMP  
velocity  (vx/c  ,..,  10-3)  is  extremely  non-relativistic.  This  feature  also  simplifies  
the  conversion  of  the  scattering  cross  sections  from  quarks  into  the  scattering  
cross  sections  from  the  nuclei  making  the  detector.  In  the  non-relativistic  limit,  
the  axial  vector  current  XfY",)'5Xf  is  just  the  WIMP  spin  and  it  is  coupled  to  the  
nucleon  spin.  Since  the  neutralino  is  a  Majorana  fermion,  it  has  no  vector  current  
Xfy",Xf  =  O.  So  the  only  other  possible  term  in  the  effective  interaction  is  the  
scalar  xfxf  which  couples  to  the  mass  of  the  nucleus-in  the  non-relativistic  
limit  the  'tensor'  current  reduces  to  the  scalar.  

At  tree  level,  the  axial  vector  (spin)  interaction  receives  contributions  from  t­
channel  Z  boson  and  s-channel  squark  exchange,  while  the  scalar  interaction  gets  
contributions from t-channel  Higgses  H,  h  as  well  as  s-channel  quark  exchange.  
See  figure  6.3.  Since  the  lightest  Higgs  might  be  considerably  lighter  than  the  
lightest  squarks,  its  contribution  to  the  scalar  interaction  could  be  significant  if  
the  neutralino  state  (6.50)  has  a  substantial  Higgsino  component.  Because  it  
is  proportional  to  the  mass  number  A  of  the  nucleus,  the  scalar  amplitude  will  
dominate  for  heavy  nuclei.  For  a  neutralino  that  is  a  pure  Bino  B,  this  occurs  for  
A  ~ 20  in  the  large  squark  mass  limit  and  this  is  confirmed  by  numerical  surveys  
of  the  supersymmetric  parameter  space  where  scalar  dominance  for  A  ~ 30  is  
almost  always  found  [27].  

It is  of interest to  examine the theoretical implications for the direct detection  
experiments  of  restricting  the  parameters  of  the  CMSSM  to  the  region  allowed  
by  the  cosmological  and  other  constraints.  This  programme  has  so  far  been  
undertaken  [28]  only  in  the  case  that  A  =  O.  The  LEP  lower  limit  on  mh  and  
the  b  -.  sy  data  provide  upper  limits  on  the  cross  sections,  while  the  g  - 2  data  
provide  lower  limits,  at  least  if  J.I.  >  O.  In  that  case,  the  overall  conclusion  is  that  
the  spin-independent  cross  section  (lSI  satisfies  

2 x  10-10  pb  ~ (lSI  ~ 6  x  10-8  pb  (6.62)  
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Figure  6.3.  Lowest-order  Feynman  diagrams  for  neutralino--quark  elastic  scattering:  (a)  
and  (b)  contribute  to  the  spin-dependent  amplitude;  (b)  and  (c)  contribute  to  the  scalar  
amplitude.  

and  for  the  spin-dependent  cross  section.  as D.  

2  x  10-7  pb  ~ aSD  ~ 10-5  pb  (6.63)  

If  the  g  - 2  constraint  is  dropped  and  IL  <  0  is  tolerated.  then  there  is  no  lower  
limit  on  aSI.  In  general.  it  is  found  that  aSI  is  relatively  large  in  the  bulk  region  
but  falls  off  in  the  co-annihilation  tail.  There  is  strong  cancellation  in  aSI  when  
IL  <  O.  

6.6.2  WIMP annihilation  in   the sun  or  earth   

If  the  galactic  halo  is  composed  of  neutralino  WIMPs,  the  WIMPs  have  a  small  
probability  of  elastic  scattering  with  the  sun  and/or  the  earth.  The  WIMPs  that  
scatter  to  a  velocity  smaller  than  the  escape  velocity  become  gravitationally  bound  
to  that  body 1•  Once  captured.  the  WIMPs  undergo  further  scattering  from  the  
elements  of  that  body  and  settle  to  the  core  in  a  relatively  short  time  period.  
Thus.  the  sun  and  earth  are  like  (inefficient)  cosmological  vacuum  cleaners.  
constantly  sucking  in  WIMPs  that  are  then  stored  in  their  cores.  WIMPs  that  
have  accumulated  in  this  way  can  annihilate.  essentially  at  rest,  to  produce  
standard  model  particles  most  of  whose  decay  products  are  absorbed  without  
any  observable  consequences.  However.  some  of  the  decay  products  include  
energetic  muonic neutrinos  (v".  v,,)  that  can  pass  through  the  sun  and  earth  and  

1  For  the  sun,  the  escape  velocity  at  the  centre  is  Vc  =  1354  km  s-I  and  at  the  surface  Vs  

795  kms- 1;  for  the  earth  Vc  =  14.8  kms- I,  V$  =  11.2  kms- I.  
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be  detected  in  asttophysical  neutrino  detectors  on  earth.  The  most  promising  
technique for  detection  is   via the   observation of  upward-moving muons  produced   
by  charged-current interactions   of the   muonic  neutrinos  with  the  rock  below  the  
detector.  Neutralinos  annihilate  almost  always  to  two-body  final  states,  each  
carrying energy  m  x' and   the  decays of  these   can  produce  muonic  neutrinos  with  
energies  between  m x /3 and   m x /2.  The  lower bound   on  the  neutralino  mass  is  
conservatively  40  GeV,  so  the  energy  of the   muonic  neutrinos  is  several  GeV.  
The  only  background  is  from  atmospheric  neutrinos  produced  by  cosmic-ray  
spallation.  This is   a  well-modelled and   easily subtracted  background.   

The first   step in   calculating  the  WIMP-induced neutrino rate  is  to  determine  
the  annihilation  rate  r A   in  the  sun  (or earth).   This  is  given by   

rA  =  !CAN2   (6.64)  

where  N  is  the  number of  WIMPs   in  the  sun  (or earth)   and  

V2  
CA  =  (uAlvl)2"  (6.65)  

VI  

(UA  Ivl)  is  the  annihilation  cross  section  multiplied  by  the  relative  velocity  in  the  
limit  of zero   relative  velocity,  i.e.  the  a  term  of (6.53),   and  VI,2  are  effective  
volumes  

Vj  ==  (3~~T )3/2  (6.66) 
2}m xp  

where  T  and  p  are  the  core  temperature  and  density  respectively.  The  time  
evolution of  N   is given   by  

N=C-CAN2  (6.67)  

where  C  is  the  WIMP  accretion  rate  and  the  second  term  arises  because  of the   
depletion  caused  by  annihilations.  The  two  processes  equilibriate  when  N =  0   
and  then  

rA  =  !C.  (6.68)  

In  other words,   the  annihilation  rate  is  entirely  determined  by  the  accretion  rate.  
One  might  wonder  whether enough   time has  elapsed  for equilibrium   to  become  
established but,   in  all  cases of  interest, it   turns out  that   there  has  been  [29].  

Thus  the  next  step  is  to  calculate  the  capture  rate  C,  which  is,  in  turn,  
determined  by  the  elastic  scattering  of the   WIMPs  with  the  nuclei  of the   sun  
(or earth).   We  have  already  noted  that  there  are  just  two  channels for   elastic  
scattering:  axial  (spin-dependent)  and  scalar  (spin-independent).  The  former  
contributes  only  to  WIMP  capture  by  the  sun,  since  a  negligible  fraction  of the   
earth's mass   is  in  nuclei  with  spin.  The  latter contributes   to  capture  by  both  the  
sun  and  the  earth.  

It  is  beyond  our scope   to  give  any  details  of these   calculations.  We  merely  
note  that it  is  relatively   straightforward to  estimate   the  axial  contribution in   terms  
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of the  elastic  (axial)  scattering  cross  section  0'0  for  WIMPs  on  protons.  The  result  
is  

-I  (1  Gev)  (  )  S (mx  ) 0'0  (6.69) C:;n  =  1.3  x  1025  s  --;;;;- 10-40  cm2  mN  

assuming  a  halo  density  of 0.3  GeV  cm-3  and  a  dark  matter  velocity  dispersion  
of  jj  '"  270  km  s-I.  S  is  a  suppression  factor  with  the  properties  

S(  ) ,.."  3(v!c) 
S(I)  =  1  asx  ....  00.  (6.70) 

x  2jj2x  

The  capture  rate  by  the  scalar  interaction  is  much  more  complicated  and  requires  
the  scattering  cross  section  from  several  nuclei.  We  refer  the  interested  reader  
to  [30).  

Once  the  capture  rate  and,  hence  the  annihilation  rate  is  known,  the  
calculation  of  the  flux  of  high-energy  neutrinos  is  straightforward.  It  is  given  
by  

( dt/»  r A  (dN)  (i  =  vI"  v",)  (6.71) 
dE  ;  =  41rR2  ~ BF  dE  F,;  

where  R  is the  sun-earth distance,  or the radius  of the earth, for neutrinos from  the  
sun  or ~arth respectively,  B F  is  the  branching  ratio  for  annihilation  into  channel  F  
and  (dN /dE) /.1  is  the  differential  energy  spectrum  for  neutrinos  of  type;  at  the  
surface of the sun  (or earth) expected in channel  F  at the core  of the sun  (or earth).  
The  cross  section  for  the  production  of  a  muon  via  a  charged-current  interaction  
is  proportional  to  the  neutrino  energy,  and  the  range  of  the  mu on  in  the  rock  is  
roughly  proportional  to  the  muon  energy.  Thus,  the  rate  for  the  observation  of  
neutrino-induced  through-going  muons  is  proportional  to  the  second  moment  of  
the  neutrino  energy  spectrum:  

(6.72) f  (::t,;  E2 dE.  

For  neutralinos giving  a  relic  density  in  the  range  (5.22),  this  gives  a  rate  for  
upward  muons  of  

r~ctor =  1.65  x  10-4  m-2  yr-I  (-.!!!.L.)  S  (mx)  (6.73) 
1  GeV  mN  

for  WIMPs  with  only  an  axial  coupling.  S  is  the  suppression  factor  occurring  
in  (6.69).  As  already  noted,  this  is  relevant  only  for  neutrinos  from  the  sun.  The  
results of the analogous calculation for WIMPs  with only a scalar coupling cannot  
easily  be  summarized.  Suffice  it  to  say  that  fluxes  as  high  as  10-2  m-2  yr-I,  the  
current experimental upper bound on the rate,  and  of at least  10-4 m-2 yr- I, the  
expected  sensitivity  of  the  next  generation  of km2  detectors,  can  be  obtained  for  
parameters  giving  10  Ge V  ~ m x  ~ 1  Te V.  If m x  ~ 80  Ge V,  the  signals  from  the  
sun  and  earth  are  of  comparable  strength and  the  earth's  signal  is  greater  when  
m x  ~ 80  Ge V,  see  figure  34  in  [31).  
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6.6.3  WIMP annihilation  in   the halo   

The  foregoing  proposals  for  observing  WIMPs  are  the  most  promising  techniques  
currently  available.  However,  WIMPs  have  other  potentially  observable  effects.  
In  particular,  their  annihilation  in  the  galactic  halo  can  produce  anomalous  cosmic  
rays [32]  which may be distinguishable from the familiar background cosmic rays.  

These  background  cosmic  rays  occasionally  include  antiprotons  produced  
by  spallation  of  primary  cosmic  rays  on  interstellar  hydrogen  atoms.  The  flux  
of  such  antiprotons  cuts  off  at  energies  below  about  I  Ge V.  essentially  for  
kinematic  reasons  because  the  primary  cosmic-ray  spectrum  falls  rapidly  as  
the  energy  increases.  WIMP  annihilation,  in  contrast,  can  easily  produce  low­
energy  antiprotons  as  a  result  of  hadronization  of  the  decay  products.  Since  the  
background  production  of antiprotons  with  energies  in  the  range  100-1000  Me V  
is  well  understood,  it  is  possible,  in  principle,  to  observe  the  anomalous  
antiprotons,  provided  that  the  WIMP  mass  is  not  too  large.  

Another  signal  could  be  the  observation  of  'line'  source  positrons  arising  
from  the  direct  annihilation  of  WIMPs  into  an  electron-positron  pair.  Of  
course,  there  are  other  sources  of  positrons  arising  from  the  showering  of  
other  annihilation  products  but  these  will  have  a  broad  energy  spectrum  that  is  
indistinguishable  from  the  background.  Although  propagation  through  the  galaxy  
would  broaden  the  line,  there  are  no  other  sources  of  such  a  peak  in  the  energy  
range  10-1000 Ge V. Observation of such a peak would give a direct measurement  
of  the  WIMP  mass.  Unfortunately  (Majorana)  neutralino  annihilation  into  an  
e+e- pair  is  helicity  suppressed,  as  previously  noted.  However,  if  the  neutralino  
state  (6.50)  contains  a  significant  Higgsino  component,  the  annihilation  process 
x?X?  ~ W+W- followed  by  W+  ~ ~+\le will  produce  a  positron  with  energy  
peaked  around  m x  /2.  

Similarly.  WIMP  annihilation  in  the  halo  into  two  photons  would  produce  
a  monochromatic  line  at  an  energy  of  the  WIMP  mass.  Of  course,  since  they  
are  electrically  neutral,  there  is  no  direct  coupling  to  photons  but  equally  their  
(weak)  interaction  with  other  matter  generates  a  small  but  non-zero  cross  section  
for  annihilation  into  two  photons  via  a  loop  diagram.  Estimates  of  the  cross  
section  suggest  that  the  signal  would  be  barely  observable  with  current  detectors.  
However. cold dark matter predicts cusps in  the density in the  cores  of galaxies.  It  
is  doubtful  whether  such  cusps  are  compatible  with  observations  but  a  (residual)  
peak  in  the  density  would  assist  the  generation  of  a  visible  signal.  

6.7  Exercises  

I.  Verify  that  the  abundance  Ox,o  of cold  dark  matter  X  is  given  by  (6.22)  and,  
hence,  check  the  estimate  (6.28).  

2.  Show  that  the  increase  in  temperature  following  reheating  after  the  gravitinos  
decay  is  given  by  (6.43)  and,  hence,  derive  the  bound  (6.44)  on  m3/2.  
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3. 	 Show  that  a  neutralino  with  mass  m}(  ....,  100  GeV  scattering  from  a  xenon  
nucleus  with  mXe  ....,  130  GeV,  with  a  typical  WIMP  speed  v ,..,.  270  km  s-I,  
produces  a  nuclear recoil  energy  which  is  below  100  ke V.  

6.8  General references   

We  have  found  the  following  article  particularly  useful  in  preparing  this  chapter.  

• 	 Jungman  G,  Kamionkowski  M  and  Griest  K  1996  Phys.  Rep.  267  195  
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Chapter 7 

Inflationary cosmology 

7.1 Introduction 

The inflationary universe scenario was devised by Guth [I] to provide a resolution 
to two major puzzles in the standard model of the universe, namely the horizon 
and flatness problems. As a by-product, inflation also solves problems associated 
with excessive abundances of particle relics. There are two basic versions of 
cosmological inflation which we shall refer to as 'old' and 'new' (or 'slow­
roU') inflation. In both versions, the universe undergoes a period of very rapid 
expansion driven by a large cosmological constant in the false vacuum. This 
period of inflation ends when the universe has evolved to the true vacuum with 
zero cosmological constant. In the case of old inflation, the universe supercools 
in some high-temperature phase before undergoing a first-order phase transition 
to some low-temperature phase. In the case of new inflation, some scalar field 
rolls in a very flat region of a potential (where the vacuum energy is large and 
positive) and eventually rolls to a minimum of the potential with zero vacuum 
energy (cosmological constant). 

In the first part of this chapter, we shall discuss old inflation and its successes 
and shortcomings. The second part of the chapter contains an exposition of new 
inflation (slow roll inflation.) We shall see that, as well as providing a solution to 
these cosmological problems, slow-roll inflation is capable of accounting for the 
size of the density perturbations in the cosmic microwave background radiation. 

7.2 Horizon, flatness and unwanted relics problems 

We discuss these three puzzles in the standard model of cosmology in turn. 

7.2.1 The horizon problem 

The cosmic microwave background radiation (CM BR) is very homogeneous. 
However, in the standard model, the present universe consists of many regions 
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which  were  causally  disconnected  up  to  the  time  of  recombination  of  electrons  
and  photons  after  which  the  photons  we  now  observe  as  the  cosmic  microwave  
background  underwent  no  further  scattering.  The  puzzle  is  how  these  causally  
disconnected  regions  could  have  ended  up  with  the  same  microwave  background  
temperature.  

We  can  estimate  how  many  causally  disconnected  regions  there  were  at  the  
time of recombination.  From (3.117),  the proper distance at time  t  from  any  point  
to  the  particle  horizon  is  

dH(t)  =  2t  (7.1)  

where  we  have  taken  n  =  !  for  a  radiation-dominated  universe.  In  particular,  at  
the  recombination  time  tn  

dH(tr )  =  2tr •  (7.2)  

(We  are  assuming  that  for  most  of the  time  from  t  =  0  up  until  tr  the  universe  was  
radiation  dominated.  This  is  a  reasonable  approximation  because  the  temperature  
at  which  the  transition  from  radiation  dominance  to  matter  dominance  occurs  and  
the  temperature  at  which  recombination  of electrons  and  protons  occurs  are  weB  
within  an  order  of magnitude   of each   other,  respectively  0.37  eV  and  0.26  eV.)  
We  need  to  know  how  many  horizon  volumes  at  time  tr  have  expanded  to  fiB  the  
presently  observable  region  of the   universe  (the  present  horizon  volume).  Thus,  
we  need  to  know  the  radius  of the  region  at time   tr  that  has  expanded to   the  radius  
of the   presently  observable  universe.  Let  the  volume  of the   observable  universe  
at  the  present  time  to  be  Vo(to)  and  let  the  horizon  volume  at  the  recombination  
time  be  Vr (t r).  Since  RT is   constant,  because  of conservation  of entropy,  

Vo(tr)  = Vo(to)   R: (t,)  =  Vo(to)  (To)3  (7.3) 
Vr(tr)  Vr(t,)  R  (to)  Vr(tr )  Tr  

In  view  of (3.117),  

Vo(tr)  = (~)3  (To)3  (7.4)  
Vr(tr )  tr  Tr  

With  the  universe  matter  dominated  from  approximately  the  time  of  
recombination  to  the  present  time,  so  that  

R(t) ex   t 2/3  (7.5)  

we  have  
tex T- 3/2 •  (7.6)  

Thus,  

Vo(tr)  ~ (Tr To  y/2  ~ 3.6  x  )04  (7.7)  
Vr(tr )  

for  Tr  ~ 3.0  x  HP  K and   To  ~ 2.73  K.  This  is  the  number of  horizon   volumes  
at  the  recombination  time  that  expanded  to  fiB  the  presently  observable  universe  
(the  present horizon   volume.)  As  advertised,  this  is  a large   number.  
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7.2.2  The flatness   problem  

The  present  value  of  r2,  the  ratio  of  the  density  of  the  universe  to  the  critical  
density,  is  not  more  than  one  order  of  magnitude  different  from  1.  Since,  as  in  
section  1.3,  

k  
(7.8) r2  - 1 =  H2R2  

the  departure  of  r2  from  1  is  a  measure  of  the  extent  to  which  the  universe  is  
curved  (when  k  ¥:  0).  The  value  of  r2  varies  with  time  and  we  can  estimate  how  
close  to  1  it  would  have  had  to  have  been  at  earlier times   to  be  as  close  to  I  as  
it  is  today.  The  conclusion  we  shall  come  to  shortly  is  that  r2  would  have  been  
extraordinarily  close  to  I  in  the  early  universe  to  be  consistent  with  the  present  
value  ofr2.  

First,  let  us  study  the  way  in  which  r2  - 1  varies  as  the  scale  factor  of the   
uuniverse  R(t) changes.   Recalling  that  

P  8rrGN 
r2=-=--p (7.9) 

Pc  3H2  

and combining  with   (7.8),  we  recover the   Friedmann equation   

H2R2  =  8; GNpR 2  _  k.  (7.10)  

Assuming a  radiation-dominated  universe,   p  is  proportional to   T4  and, for  entropy   
conservation,  RT is   constant.  Thus,  we  can  write  

p  =  aR-4•  (7.11)  

Then,  using  (7.10),  
k  

r2-1=8  --.  (7.12)  
jrrGNaR-2 ­ k  

It  is  clear,  therefore,  that  r2  -+  1 as   R  -+  O.  However,  as  the  universe  expands.  
r2  -+  0  as  R  -+  00  if k   = -I,  and   r2  -+  00  as  R  -+  Rmax  = (JrrGNa)1/2   if  
k=1.  

Next.  let  us  estimate the   value of  r2   - 1 in   the  early  universe.  Write  

P  =~T4 (7.13)  

where,  from  (2.22),  

rr2  (  ~ =  30  NB  + gNF 
7)   .  


 (7.14)  

Then,  from  (7.12), (7.11)   and  (7.13),  

Q _  1 - k  '" -::--_k_"'7   (7.15)  
- JrrGN~T4R2 - k  - J1rGN~T2 
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for large   values  of T,  where   
k  

k =  R2T2'  (7.16)  

In  an  adiabatically  expanding  universe,  the  constancy  of RT  implies   that  k is   a  
(dimensionless) constant.   We  can  estimate  k from (7.15),   (7.13) and  (7.10)  as   

A  8rrGNP  (no  -1)u2  
k=  '"  0  (7.17)  

--- - 2  To 

where  Ho  and  To  are  the  present  values:  Ho  ~ 1.54  x  10-42  GeV  and  To  ~ 
2.73  K  ~ 2.35  x  10-13  GeV.  For 00  differing   from  I  by  no  more  than  an  order  
of magnitude,   

Ikl  < 2  '"  x   IQ-S8 .   (7.18) 

We  are  left with   an  unnaturally small   number for  III  (unless  k  is   strictly zero).  
This  bound  on  Ikl  can  now  be  translated  into  a  bound  on  10  - I1  at  early  

times.  By  way  of illustration,   we  take  the  value  of ~  obtained  in  an  SU(5)  
supersymmetric  GUT and   estimate  the  value  of 10   - 11  at  the  grand  unification  
scale and  at  the   Planck scale.   In  this case,   as in  section  2.7,   NB  + ~NF  = ~ and  
so  

~ = 55.5.  (7.19)  

Recalling  that  GN  =  mp2,  where  the  Planck  mass  mp  =  1.22  x  1019  GeV,  we  
get the   bound at  the   grand unification   scale,  Tc  =  2 x  1016  GeV,  

10  ­ 11  :s  1.66  x  IQ-SS  (7.20)  

and  at  the  Planck scale   

10  ­ 11  :s  1.66  x  10-61  (7.21)  

Again,  these  are  unnaturally  small  numbers  (unless  k  is  strictly zero).   The  
problem is   to find   a  way  that conditions  in   the early   universe could  have   produced  
such  small  numbers.  

7.2.3  The  unwanted  relics  problem  

It  is  not  infrequently  the  case  that  particles  produced  in  the  early  universe  are  
calculated  to  have  unacceptably  large  relic  densities  in  the  present  universe,  either  
because  they  provide  too  large  a  contribution  to  the  mass  of  the  universe  or  for  
other  reasons.  For  example,  as  discussed  in  section  3.10,  unacceptably  large  
monopole  densities  are  produced  in  some  GUTs.  A  mechanism  is  needed  to  dilute  
these  densities  to  acceptable  values.  
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7.3  Old  inflation  

A  solution  to  all  three  problems  discussed  in  the  last  section  is  for  there  to  have  
been  a  period  of  very  rapid  expansion  of  the  universe  (cosmological  inflation)  
during  which  the  scale  factor  of  the  universe  grew  by  a  large  amount.  We  shall  
discuss  shortly  how  much  expansion  is  sufficient  to  solve  these  problems.  A  
simple  mechanism  to  produce  the  required  expansion  is  for  the  universe  to  have  
supercooled  in  a  false  vacuum  prior  to  undergoing  a  first-order  phase  transition  to  
the  true  vacuum  in  the  way  described  in  section  2.9.  In  that  case,  a  large  positive  
vacuum  energy,  constant  until  the  phase  transition  is  completed,  can  drive  a  period  
of  expansion  in  a  de  Sitter  universe.  After  some  supercooling  has  occurred,  the  
vacuum  energy  density  in  the  Friedmann  equation  will  dominate  the  radiation  
energy  density  and  the  curvature  term,  and  the  Friedmann  equation  simplifies  to  

2  R2  81fGN  
(7.22) H  =  R2  =-3-V  

where  V  is  the  vacuum  energy  density  in  the  false  vacuum.  This  is  equivalent  to  
the  de  Sitter  equation  with  cosmological constant  

A  =  81fGNV  =  81fmp2V.  (7.23)  

Moreover,  the  Hubble  constant  during  the  inflationary  era  has  a  constant  value  
given  by  

H2  =  lA.  (7.24)  

During  cosmological  inflation,  the  scale  factor  of  the  universe  grows  
exponentially  

R(t)  ex  exp  (~t) =  eH'.  (7.25)  

The  exponential  expansion  means  that  by  the  time  the  transition  to  the  true  
vacuum  occurs,  the  scale  factor  of  the  universe  may  have  increased  by  many  
orders  of  magnitude.  The  phase  transition  will  be  completed  by  the  formation  
of  bubbles  of  the  true  vacuum,  as  discussed  in  section  2.9.  Once  formed,  the  
bubbles  will  tend  to  coalesce  and  the  energy  stored  in  the  walls  of  the  bubbles  
will  be  released  resulting  in  the  universe  reheating.  Thereafter,  the  universe  
will  evolve  as  a  (in  the  first  instance)  radiation-dominated  Friedmann-Robertson­
Walker  (FRW)  universe.  However,  the  initial  conditions  for  the  evolution  of  the  
FRW  universe  will  have  been  drastically  modified  by  the  period  of  inflation.  If  
sufficient  inflation  has  occurred,  the  various  problems  discussed  in  the  previous  
section  will  be  solved.  We  now  estimate  how  much  inflation  is  required  for  this  
purpose.  

Consider  first  the  horizon  problem.  This  problem  will  be  resolved  if  the  
presently  observable  universe  lies  in  a  single  region  which  was  causally  connected  
at the time  of decoupling of photons from  matter (the  recombination time),  rather  
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than containing  of the order  of 3.6 x  104 such regions as in section 7.2. The usual  
expression  (3.117)  for  the  distance  to  the  particle  horizon  does  not  hold  during  
the  period  of cosmological  inflation.  Instead,  

('  dt'  
(7.26) dH(t)  =  R(t)  lo  R(t'}  

with  R(t)  given  by  (7.2S)  if  we  neglect  the  period  of growth  of dH(t)  during  the  
period  of  radiation-dominated  expansion  which  preceded  cosmological  inflation.  
Thus,  during  the  inflationary  period,  

dH(t)  =  H-I(eHt  - 1).  (7.27)  

The  exponential  growth  of dH(t)  during  this  period  means  that, once  the  universe  
has  reheated  to  around  the  critical  temperature  after  the  phase  transition  has  
been  completed,  the  horizon  volume  is  exponentially  greater  than  it  was  at  this  
temperature  prior  to  inflation.  (Because  the  energy  density  in  the  false  vacuum  
is  of  order  Tc4  and  the  radiation  density  in  the  FRW  universe  is  given  by  (2.22).  
reheating  to  a  temperature  of order  Tc  occurs.)  Thus,  after  the  subsequent  period  
of  radiation-dominated  expansion  in  the  FRW  universe,  the  size  of  the  horizon  
volume  at  t  = t,  is exponentially greater than in  the standard model  of cosmology.  
It  is  then  easy  for  one  horizon  volume  at  t  =  t,  to  contain  many  times  over  the  
volume  which  will  expand  to  the  presently  seeable  universe.  

Consider  next  the  flatness  problem.  Let  T  =  Tc  be  the  temperature  at  
which  the  low-temperature  minimum  of  the  effective  potential  (the  true  vacuum)  
becomes  the  absolute  minimum.  When  the  phase  transition  is  first  order,  the  
universe  will  supercool  to  a  temperature  T  =  T,  before  the  phase  transition  is  
completed  by  tunnelling  out  of  the  false  vacuum,  as  described  in  section  2.9,  
and  reheating  of  the  universe  to  a  temperature  T  =  T R  occurs,  with  T R  '"  Tc.  
The period when  supercooling is  occurring is a period  of non-adiabatic expansion  
which  modifies  the  discussion  of  the  flatness  problem  given  earlier.  The  flatness  
problem was cast in section 7.2 as the unnatural smallness  of 10 - 11 = lif H2  R21  
at  early  times,  e.g.  at  the  (supersymmetric)  grand  unification  scale.  During  
inflation,  assumed  to  occur  at  that  scale,  H2  is  given  by  (7.24)  and  is  constant.  
At  the  same  time,  R  grows  exponentially.  In  (7.20),  10  - 11  was  of order  10-55.  

Thus.  if  R2  grows  by  more  than  about  55  orders  of  magnitude  during  inflation,  
we  end  up  with  a  'natural'  value  of  10  - 11  of  order  I  at  the  supersymmetric  
grand  unification  scale.  It  is  usual  to  measure  inflation  in  terms  of  e-folds  (one  
e-fold  being  growth  of  R  by  a  factor  of e).  In  terms  of e-folds,  what  we  require  to  
overcome the flatness problem is around 64 e-folds  of inflation 1.  This is sufficient  
to  solve  the  horizon  problem  discussed  above.  

Finally,  turning  to  the  unwanted  relics  problem,  let  us  consider,  for  
definiteness,  the  magnetic  monopole  problem.  In  section  3.10,  the  excessive  

1  The  WMAP  data  which  suggests  that  100- 11  may  be  two  orders  of magnitude  less  than  1 indicates  
66  e-folds  may  be  nearer  the  marlt.  This  makes  little  difference  and  we  shall  use  64  e-folds  throughout.  
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magnetic  monopole  contribution  to  the  predicted  density  of  the  universe  today  
derived  from  the  size  of the  ratio  of the  monopole  number  density  to  the  entropy  
density  at  the  time  of  the  grand  unified  phase  transition  at  which  the  monopoles  
were  produced  or,  equivalently,  from  the  size  of  the  ratio  of  the  number  of  
monopoles to the entropy.  The problem can be solved if a great deal  of entropy is  
generated  by  inflation.  

During  supercooling,  the  entropy  does  not  change.  However.  the  non­
adiabatic  reheating  results  in  increased  entropy.  The  entropy  density  prior  to  
supercooling  is  of  order  T;.  If the  reheating  temperature  T R  ""  Tc,  the  entropy  
density  is  still  of  this  order  after  reheating.  However,  because  the  volume  of  
any  region  has  been  inflated  by  the  inflation  of  R3.  the  entropy  in  that  region  
has  increased  by  a  factor  of  e3H l!J.t,  where  III  is  the  duration  of  the  period  of  
exponential  expansion.  If there  is  sufficient  inflation  to  solve  the  flatness  problem  
(about 64 e-folds  of inflation), then the entropy increases by a factor  of 2.4 x  1083.  

In  section  3.10,  we  found  that  for  the  case  of  a  supersymmetric  grand-unified  
phase  transition.  QMh2  was  18-19 orders  of magnitude greater than the predicted  
upper  bound  for  Qh2  (and  a  few  orders  of  magnitude  more  in  the  case  of  a  first­
order  phase  transition).  Since  the  entropy  generation  resulting  from  inflation  
reduces  QMh2  by  83  orders  of  magnitude,  the  relic  monopole  density  today  is  
insignificant.  A  similar  discussion  applies  to  other  particle  relics.  

For  all  its  successes,  old  inflation  has  a  fatal  flaw.  It  is  not  possible  to  make  
a  'graceful  exit'  [2]  from  the  period  of  inflationary  expansion  in  a  supercooling  
de  Sitter  universe  to  a  reheated  FRW  universe.  The  problem  arises  because  the  
phase  transition  is  completed  in  the  way  described  in  section  2.9  by  the  formation  
of  bubbles  of  the  true  vacuum  inside  the  false  vacuum.  In  the  first  instance,  the  
vacuum  energy  of the  de  Sitter  phase  emerges  as  energy  in  the  bubble  walls.  For  
the  universe  to  thermalize,  it  is  necessary  for  the  bubble  walls  to  undergo  many  
collisions  with  other  bubble  walls.  The  trouble  is  that,  on  the  one  hand,  sufficient  
inflation  requires  the  nucleation  rate  for  the  true  vacuum  to  be  sufficiently  low  
to  allow  a  long  period  of  supercooling.  On  the  other  hand,  if  bubbles  of  true  
vacuum  are  to  form  sufficiently  rapidly  for  the  bubbles  to  overlap  and  collide  in  
an  expanding  universe,  then  this  same  nucleation  rate  needs  to  be  sufficiently  high.  
It  turns  out  that  these  two  requirements  cannot  be  reconciled.  More  precisely,  it  
is  found  that  for  nucleation  rates  low  enough  for  sufficient  inflation  the  universe  
always  consists  of  clusters  of  bubbles  of  true  vacuum  with  a  few  bubbles  in  each  
cluster  surrounded  by  false  vacuum.  

7.4  New  inflation  

It  is  possible  to  retain  the  successes  of  old  inflation  while  avoiding  the  graceful  
exit  problem  in  an  alternative  formulation  of cosmological  inflation  referred  to  as  
'new'  inflation  [3-5]  or  'slow-roll'  inflation.  The  graceful  exit  problem  derived  
from  the  slow  rate  of  bubble  formation  at  a  first-order  phase  transition  when  



202  Inflationary  cosmology  

V(q,>  

\  

q,j  q,f  q,  

Figure  7.1.  Slow-roll  inflation.  The  slow-roll  region  is  between  ~i and  ~f.  

the  nucleation  rate  was  sufficiently  low  to  allow  the  universe  to  remain  in  the  
false  vacuum  long  enough  for  sufficient  inflation  to  occur.  In  new  inflation.  
the  inflationary  period  begins  with  the  scalar  field  (expectation  value)  t/J.  the  
'inflaton',  which.  for  the  time  being,  we  shaH  take  to  be  real,  in  a  region  of  the  
effective  potential  V(t/J)  which  is  very  flat.  The  scalar  field  may  have  reached  
this  region  by  tunnelling  through  a  barrier  between  a  false  vacuum  and  the  true  
vacuum  or  by  the  false  vacuum  having  ceased  to  be  a  local  minimum  as  the  
temperature  dropped.  The  scalar  field  is  then  assumed  to  roll  slowly  down  the  the  
flat  region  of  the  potential.  We  shaH  discuss the  scalar  field  dynamics  involved  
shortly.  While  this  process  is  occurring,  the  value  of  the  potential  is  positive  
and  can  drive  inflation.  If  V(t/J)  is  sufficiently  flat  in  the  relevant  region,  the  
inflationary  process  can  last  long  enough  to  solve  the  cosmological  problems  
discussed  earlier.  Eventually,  t/J  reaches  a  steeper region  of the  potential. descends  
more  rapidly  towards  the  absolute  minimum  of  V(t/J)  with  V  =  0,  overshoots  
and  starts  to  oscillate  about  the  absolute  minimum.  Quantum  mechanical  particle  
creation  damps  the  oscillation  and  converts  the  vacuum  energy  into  the  energy  of  
particles.  Thermalization  of  the  emitted  particles  creates  a  radiation-dominated  
FRW  universe.  The  whole  process  is  displayed  in  figure  7.1.  We  shall  now  discuss  
each  stage  of the  process  in  more  detail.  

To  study  the  slow-roU  stage,  we  require  the  equation  of  motion  for  (the  
expectation  value  of)  the  scalar  field  t/J.  The  Lagrangian  density  for  a  (real)  scalar  
field  with  effective  potential  V (t/J)  is  

C,  =  !a"t/Ja"t/J  - V(t/J).  (7.28)  

(Then  the  action  is  S  =  f  d4x  RC.)  One  way  of  deriving  the  equation  of  
motion  is  as  the  covariantized  Euler-Lagrange  equation  for  this  field,  namely  

D,,(a"'t/J)  =  -V'(t/J)  (7.29)  
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with  the  covariant derivative   defined  by  

D'AV'"  = a'AV'"  + rrpVp   (7.30)  

for  any  4·vector  V"'.  Assuming  a  homogeneous  field  41,  so  that  the  spatial  
gradients are  zero,   

V4J  =  0,  (7.31)  

the  Euler-Lagrange equation   reduces  to  

~ + r:04>   + V'(4J)   =  o.  (7.32)  

With  the  coefficients  of affine   connection for   the  Robertson-Walker metric   as  in  
section  1.2,  the  explicit equation  of  motion   is  

~ + 3H4>   + V'(tP)   = 0  (7.33)  

where  H  is  the  Hubble  'constant'  (exercise  1).  If there   is  a  range  of values   of  
41  for  which  slow  roll  occurs,  then  in  that region   the  motion  is  dominated  by  the  
'frictional'  teon  3H4>  and  the  ~ teon  is  neglected.  Then  the  equation  of motion   
simplifies  to  

4>  = _ V'(tP)   .  (7.34) 
3H  

We  derive  the  conditions that   V(tP)  must satisfy   to  obtain  

13:4>1  «  (7.35) 
1.  

The double  time   derivative  ~ may  be  estimated from   (7.34) as   

..  1,.  1  2  •  
41  = - 3H V   (4J)tP  + 3 H- HV(4J).  (7.36)  

An  estimate  of  if  is  now  required.  When  the  vacuum  energy  density  Pv  
dominates  over  the  radiation  density  and  the  curvature  teons,  the  Friedmann  
equation  gives  

2  81rGN  81r_2 
H  = --Pv  =  -m p  Pv·  (7.37) 

3  3  
Also,  the  energy-momentum tensor  for   the  scalar field   is  given  by  

a.c  atP 
T.  -----8 .c   (7.38) 
"'''  - a(a"'tP)  oxv  "'''  

=  a",4Ja"tP  - !g",vOl.tPo'AtP  + g",v  V(4J).   (7.39)  

For a   homogeneous field   41,  the  vacuum  energy density   pv  is  given  by  

1  ·2 
pv  =  Too  = '1.41   + V(4J).   (7.40)  
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If we  assume  that  the  energy  density  is  dominated  by  the  potential  energy,  then  

2  811'  -2 
H  = "3mp   V (t/».  (7.41 )   

We  shall  see  shortly  that  this  is  a  consistent  approximation  when  the  effective  
potential  Vet/»~ is  flat  enough  to  satisfy  the  conditions for   slow  roll.  Returning to   
(7.36) with   if estimated  from   (7.41),  we  see that   

-"'-. :i.   =  I  81rm-2 
--V'(t/»  + -_P-H-4(V'(t/>))2.   (7.42) 

3Ht/>  9H2  54  

To  satisfy  (7.35), we   require that   

1V'(t/» I  
 «1  (7.43)  9H2 

and  
81rm2  

54  p  (V'(t/>))2 H-4« I.   (7.44)  

With  H2  given by  (7.41),  these   slow-roll  conditions are   

m~IV'(t/»1 «2411'  (7.45)  

and  

2  (V'(t/»)2  «48Jr.  (7.46) mp  Vet/»~ 

Slow  roll  occurs in   the  range  of t/>  for which   Vet/»~ is  flat  enough  to  satisfy  these  
two conditions.   

It can   now  be  seen  that,  when  the  slow-roll  conditions  are  satisfied,  the  
vacuum  energy  density  is  dominated  by  the  potential  energy.  Using  (7.34),  the  
kinetic  tenn in   (7.40)  is  

~,;,2 =  (V:~~!)2 (7.47)  

so that.   using (7.41)  and  (7.46),   

!,;,2  m~ (V'(t/»)2  
Vet/»~ = (7.48) 

9611'  vet/»~ «  I.  
If the   slow  roll  occurs  between  times  ti  and  t I, and   the  value  of the   scalar  

field  evolves  from  t/>i  to  t/> I  during  this  time,  then  the  amount  of  inflation.  
measured as  the number of  e-folds, is given by  

Ne  ==  In  -RI  = 
Ri 

1'/  -R  dt  = 1'/  H  dt.  (7.49)  
 '1  R  '1  
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Thus,  when  4>  is  given  by  (7.34),  

Ne  =  In  RI  = 1·'  Hd~ = -1·'  3H2~ (7.50) 
Ri  .,  tP  .,  Y'(tP)  

and  when  the  vacuum  energy  density  is  dominated  by  the  potential  energy,  as  in  
(7.41), the  number  of e-folds of inflation  is  

-21·'  == RI  Y(tP) Ne   In- = -81rm  p  -,-dtP.  (7.51) 
Ri  .,  Y  (t!»  

If we  make the   approximation  

V'(tP)  ~ Y'(tPi)  + Y"(tPi)(tP  - tPi)  (7.52)  

and  take  
Y'(tPi)  ~ 0  (7.53)  

for a   flat  potential.  then  

Y'(t!»  ~ Y"(t!>i)(tP  - tPi).  (7.54)  

Substituting this   into  (7.34), we   find  that  

Y"(tPi)  ) 
t!>-tPi~exp (  -~(I-ti) .  (7.55)  

Then. the   motion  is  slow over  a   time  period  

3H  
f""--­ (7.56)  

IV 11  (tPi) I  
and,  using  (7.49).  

R  3H2  
Ne  =  In  -1.  ""  H f   "" --­ (7.57)  

Ri  1V"(tP;) I  
With  H2  given  by  (7.4), this   gives  

In  RI  ""  81rY(tP)  .  (7.58)  
Ri  m~IV"(tPi)1 

Thus.  when  the  slow-roll  condition  (7.45)  is  satisfied.  In  RI/Ri  is  large  and  
we  get  many  e-folds  of inflation.   Equation  (7.58)  is  useful  as  an  initial  test  of  
whether sufficient   inflation  can  occur.  The estimate   of the   number of  e-folds   of  
inflation  can  be  sharpened  up  by  performing  the  integration  in  (7.51)  over  the  
region  between  tPi  and  tP I  which  are  the  boundaries  of the   region  in  which  the  
slow-roll conditions  are   satisfied.  

All  of this   discussion  assumes  that  the  motion  of tP   across  the  flat  region  
is  that  of a   classical  field.  If there  are  significant  quantum  fluctuations.  tP  may  
cross  the  flat  region  more  rapidly  and  these  conclusions  may  no  longer be   valid.  
We  shall  see  later  that.  in  the  de  Sitter  space  of an   inflating  universe.  there  are  
substantial  quantum  fluctuations  and  we  need  to  check  that  this  effect  is  not  
sufficient to  invalidate  these  estimates  of  Ne.   This will   be  discussed in  section  7.6.   
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7.5  Reheating  after inflation   

Eventually,  slow  roll  ends  when  the  inflaton  field  ~ reaches  a  steeper region  of the  
potential.  The  inflaton  then  descends  more  rapidly  towards  the  absolute  minimum  
of  the  potential,  overshoots  it  and  starts  to  oscillate  about  the  absolute  minimum.  
Assuming  that  the  inflaton  possesses  couplings  to  matter  fields,  the  oscillation  is  
damped  by  quantum  mechanical  particle  creation  as  vacuum  energy  is  converted  
into  energy  of  particles  [6-9].  Denote  the  decay  rate  of  the  inflaton  by  r;.  We  
shall  assume  that  r;  ;S  HOIJI;,  where  H05I.:  is the value  of the  Hubble constant when  
the  slow-roll  period  ends  and  the  oscillating  period  begins.  

A  simple  way  of  introducing  the  damping  by  particle  emission  into  the  
dynamics of the  inflaton  is  to  modify  (7.33) to  

j,  + 3H~+  r;~ +  V'(~) = o.  (7.59)  

Multiplying  by  ~/2 and  recalling  (7.40)  for  the  vacuum  energy  density  Pv,  we  
find  that  

PV  + (3H  + r;)~2 = o.  (7.60)  

For  simple  harmonic  oscillations,  the  average  of  the  kinetic  energy  over  an  
oscillation  is  equal  to  the  average  of  the  potential  energy  over  an  oscillation,  so  
that  

I  ·2  I 
l(~ )  =  (V(~» =  l(PV).  (7.61)  

Averaging  (7.60)  over  oscillations,  we  write  

PV  + (3H  + r ;)pv  =  0  (7.62)  

where  Pv  is  now  understood  to  refer  to  the  time-averaged  quantity.  We  shall  
discuss  later  in  this  section  the  circumstances  in  which  (7.62)  is  valid.  

While  t  ;S  r;I,  neglecting  the  time  between  the  big  bang  and  the  start  of  
oscillations,  the  development  of Pv  is  given,  to  a  good  approximation,  by  

PV  +3Hpv  =0  (7.63)  

which  is  identical  to  the  energy  conservation  equation  in  a  matter-dominated  FRW  
universe.  Thus,  we  may  regard  the  vacuum  energy  density  as  equivalent  to  a  gas  
of  non-relativistic  ~ particles.  During  this  period,  

Pv  ex  R-3  R  ex  t2/3  and  Pv  ex  ,-2.  (7.64)  

When  t  ".,  r; I,  rapid decay  of the  vacuum energy to emitted particles occurs  
and  the  universe  reheats  to  a  temperature  TR  given  by  

",2  (  _I 7)  4 
30  NB  +  gNF  TR  =  pv(t  =  r;  )  (7.65)  
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where  NB  + IN  F  = ~ for  the  supersyrrunetric  standard  model  and  ~ for the   
standard  model.  If we  define   a  scale  M  by  

M4  ==  Pv(t  = ti),  (7.66)  

where li   is  the  time  that slow   roll  begins,  then  we  still  have  

Pv (I   =  lose)  ~ M4  (7.67)  

because Pv   ~ V(t/»  during slow   roll and   V(t/»  does not  change  significantly  over   
the  flat  region  in  which  slow  roll  occurs.  The  initial  value  Ho~ of the   Hubble  
constant when   the  oscillatory period  starts   is  then  given by   

H 2  _  81l'  -2M 4  
o~ - 3  mp  .  (7.68)  

The time   lose  when  the oscillatory   period starts   is then   of order  

to~ '" Ho~  =  VS; {3 mpM- 2  (7.69) 

(or one  or  two   orders of  magnitude  greater).   Then, from   (7.64),  we  see  that  

PV(I  = ril)   2  
---~ = (r  ~/ose) (7.70)  
pv(t =  lose)  

and, using   (7.69) and  (7.67),   we  have  

3  
Pv (I  =  r", 

_I  2  
 ) =   -81l'  <f ",m p)   .  (7.71)  

Consequently, the   reheating temperature   T R  of (7.65)  is  

TR  _  (  45  )1/4 
 
(7.72) 41l'3(N8  + ~NF)  <f",mp)I/2.  

Note  that this  is   not,  in  general, of  order  M.   
This discussion   depends  upon  (7.63) for   the  time  development of  the   (time­

averaged)  vacuum  energy density.   This  is  known  to be   correct for   the  oscillatory  
period if  the   t/>  particles decay   only  into fermions.   However,  when  the  t/>  particles  
decay  into  pairs  of bosons   t/>  -+  X X,  then  it  is  possible  for  very  rapid  decay  via  
parametric resonance  to  occur  [10],  a   process which  generates  very  large  numbers   
of X   particles.  This is   referred to   as  'preheating'.  However,  the  (radiation) energy   
density in   light X   particles rapidly  becomes  small  compared  to  the   (matter) energy   
density  remaining  in  the  oscillatory  t/>  vacuum.  Thereafter,  the  reheating  process  
occurs as   before and   the  estimate of  T  R  is  not  much  altered.  



208  Inflationary  cosmology  

Since  all  pre-existing  baryon  asymmetry  will  be  diluted  exponentially  by  the  
inflationary  period,  the  baryon  asymmetry  we  observe  now  must  be  generated  
after  reheating  has  occurred  or  during  reheating.  If the  reheating  temperature  T R  

is  sufficiently  high,  then  the  baryon  asymmetry  may  be  produced  in  the  usual  way  
by  the  decay  of  leptoquark  bosons  in  a  GUT.  Lower  reheating temperatures  will  
suffice  if  the  sphaleron  mechanism  applies  instead.  A  further  possibility  is  that  
the  baryon  asymmetry  is  produced  by  the  decay  of  the  oscillating  vacuum  state  
which  exists  after  slow  roll  has  ceased,  i.e.  by  the  decay  of  particles  associated  
with  the  inflaton  field  t/J.  This  is  the  situation  discussed  in  section  4.6  where  all  of  
the  entropy  of  the  universe  is  produced  by  the  decay  of particles  whose  decay  is  
also  producing  the  baryon  asymmetry.  Then  the  baryon  asymmetry  is  

nB  ETR 
-""- (7.73) 
s  m~ 

where  E  is  the  net  baryon  number  produced  by  the  decay  of  a  scalar  particle  
associated  with  t/J.  There  is  the  weaker  requirement  that  the  reheating  temperature  
should  be  high  enough  for  nucleosynthesis  to  occur  so  that  TR  should  be  at  least  
a  few  MeV.  

7.6  Inflaton field   equations  

As  discussed  in  section  7.4, estimates of the  amount  of inflation  occurring during  
slow  roll  require  that  quantum  fluctuations  in  the  inflaton  field  j,  do  not  cause  the  
flat  region  of  the  potential  to  be  crossed  too  rapidly.  We  now  show  that,  in  the  
inflationary  universe,  (t/J2)  grows  linearly  with  time  [It-13].  

The  inflaton  field  operator  may  be  expanded  in  tenns  of plane-wave  modes  
as  

A  I  jl·z t/J(t,  x)  =  ,,.,'2,')  
J d 3 k  (1/It(t)e  at  + h.c.)  (7.74)  

where  the  creation  and  annihilation  operators  at  and  aZ  obey  

[al,  a!,]  =  8(k  - k').  (7.7S)  

For  a  massless  field  in  a  flat  FRW  space,  the  field  equation  

D,.,,(a"'t/J)  = 0  (7.76)  

leads  to  
tl(t)  +  3H~t(t) + R-2(t)k21/1t(t)  = O.  (7.77)  

With  
R(I)  =  Roe Ht  (7.78)  

during  the  inflationary  expansion  and  using  the  variable  

- R-1H-1  -Ht '1=-0  e  (7.79)  
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the  equation  for  the  plane  wave  mode  1/I/c  (I)  becomes  

1/1;  - 3" -11/I~ + k21/1/c  =  0  (7.80)  

where  the  primes  denote  differentiation  with  respect  to".  The  general  solution  is  
given  in  terms  of Hankel  functions  

1/I/c(,,)  =  (~f/2 ,,3/2 H[cl (k)Hm(k,,)  + C2(k)H~;~(k")] (7.81)  

where  k  =  Ik I  and  the  condition  

IC212  - ICI  12  =  I  (7.82)  

follows  from  the  canonical  commutation  relations  for  ~ and  its  conjugate  
momentum.  Retaining  only  the  positive  frequency  part  [13]  of  1/I/c(,,),  for  modes  
which  go  through  many  oscillations  in  an  expansion  time,  we  take  

c2(k)  =  I,  ct(k)  =0  (7.83)  

for  k  »  RoH.  Then,  for  k  »  RoH,  

( 1r  )1/2  2  
1/I/c(,,)  =  4"  ,,3/2 H H~/~(kr1> (7.84)  

'"  - (2k)-1/2H,,[l  - i(k")-I]e-ilc,,.  (7.85)  

and  
H2  

11/I/c(1/)12  =  213  (1  + k2 R02 H-2e-2Ht )  (7.86)  

The  quantum  fluctuation  (4)2)  may  now  be  estimated  as  follows.  Because  the  
modes  with  wavelengths  greater  than  the  horizon  (in  the  sense  of  the  comoving  
Hubble  length  H  -\ /  R(t»  are  expected  to  be  responsible  for  the  growth  of  
(4)2)  with time  [13],  an  approximation  to  (4)2)  is  obtained  by  cutting  off  the  k  
integration  at  k  =  RoHeHt •  Then.  from  (7.74)  and  (7.75),  

(4)2)  =  _1-3  f d3k  11/I/c(,,)12  (7.87) 
(21r)  

and,  using  (7.86),  this  gives  linear  growth  in  time:  

H3  
(4)2)  ::::::::  41r2  I  +  (constant).  (7.88)  

It  is  important for a  consistent model  of inflation  that quantum  fluctuations  do not  
result  in  (4))  crossing  the  flat  region  of  the  potential  faster  than  the  time  required  
for  semi-classical  slow  roll  across  this  region.  In  (7.57),  the  time  to  roll  across  the  
flat  region  (the  period  of  slow  roll)  was  

t'  '"  H-I  N~. (7.89)  



210  Inflationary  cosmology  

Thus. we   require  a  flat  region of  width   A~ with  

2  H3  H 2Nt  
(il~) >  -1" = -- (7.90) 

4rrl  471'2  

so that  we   require  

A~ >  HN~/2 (7.91) 211'  •  

We  shall  see  in  the example  in   section 7.8  that  there   is  often a   stronger constraint   
from  the  rquirement  of  obtaining  density  perturbations  of  the  size  found  by  
CO SE.  

7.7  Density  perturbations  

The  quantum  fluctuations  in  the  inflaton  field  discussed  in  the  previous  section  
result  in  density  perturbations  [14-16]  in  the  post-inflationary  universe.  which  
may  be  responsible  for  galaxy  formation.  The  density  perturbations  arise  because  
the  quantum  fluctuations  in  ;,  give  ~. i.e.  the  expectation  value  of  ;,.  slightly  
different  values  in  different  regions  of space.  This  results  in  perturbations  to  the  
value  of the  vacuum  energy  density.  

Central  to  the  discussion  of the  formation  of density  perturbations  is  the  fact  
that  a  given  comoving  wavelength  (Le.  a  wavelength  in  units  of  the  scale  factor  
R(I)  of  the  universe)  can  start  inside  the  horizon  before  inflation  begins.  cross  
outside  the  horizon  at  some  time  during  inflation.  and  then  cross  back  inside  the  
horizon  after  inflation  has  ended  and  a  radiation-dominated  universe  has  been  
established.  (By  'horizon'  we  shall  mean  here  not  the  particle  horizon  but  the  
comoving  Hubble  length  H  -1/ R (I).  This  is  a  measure  of the  distance  light  travels  
during an appreciable amount  of expansion of the universe.  Inside  of a comoving  
Hubble  length.  causal  processes  do  not  feel  the  expansion  of  the  universe.»  This  
behaviour is a  consequence  of the  fact  that when  R(I)  is  increasing  as  a  power  t P  

of 1  with  p  <  I,  the  comoving  Hubble  length  increases  with  time.  whereas  when  
R(I)  is  increasing  exponentially  with  time,  the  comoving  Hubble  length  decreases  
with  time,  while  the  comoving  wavelength  is,  by  definition,  constant.  (See  
figure  7.2.)  The  (classical)  inflaton  field  perturbation  &~(I. x)  may  be  expressed  
in  terms  ofperturbations&~(t. k)  of momentum  k  as  

&~(t.x) = f d3keii·%&~(t.k) (7.92)  

where  we  have  written  the  complete  inflaton  field  ~ (I.  x)  as  

~(I.X) =  t/Jo(l)  +&~(I.X) (7.93)  

with  t/Jo(l)  the  homogeneous  classical  field.  Quantum  fluctuations  8~(t, k)  
develop  when  the  comoving  scale  Ikl- I  /  R(t)  is  inside  the  horizon  and  become  
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Figure 7.2.   Behaviour of  the   comoving  Hubble  length  during and   after inflation.   

'frozen  in'  when  this  comoving  scale  crosses  outside  the  horizon,  so  that  it  is  no  
longer  subject  to  causal  processes.  When  this  comoving  scale  crosses  back  inside  
the  horizon,  the  fluctuations  reappear  as  classical  density  perturbations.  

Calculation  of  8~(t, k)  requires  a  generalization  of  the  equation  of  motion  
(7.33)  of  the  homogeneous  classical  field  tPo(t)  to  include  the  spatial  dependence  
of t/J(t,  x).  Including  this  dependence  (7.29)  leads  (exercise  2)  to  

if,  - R-2V 2t/J  +  3HtiJ  +  V'(t/J)  = 0  (7.94)  

where  a  flat  space  has  been  assumed.  (Note  in  passing  that  had  we  allowed  
t/J  to  have  spatial  dependence  in  the  discussion  in  section  7.4,  this  would  have  
been  damped  out  rapidly  because  of  the  exponential  growth  of  R(t)  during  the  
inflationary  period.)  Comparing  (7.33)  for  tPo(t)  with  (7.94)  for  t/J(t,  x),  we  see  
that  8~(t, k)  obeys  

(i~) + 3H (8~) +  R;2e-2Ht  k28~ +  V" (tPo)8~ =  O.  (7.95)  

For  slow  roll  away  from  a  maximum  of the  potential,  we  must  have  

V" (tPo)  <  O.  (7.96)  

The  perturbations  start  to  grow  when  the  fourth  term  in  (7.95),  which  is  the  
destabilizing  influence,  becomes  larger  than  the  third  term.  Thus,  8~(t, k)  starts  
to  grow  at  a  time  t*(k)  (where  k  ==  Ikl)  given  by  

R;2e-2HtOk2  =  -V"(tPo).  (7.97)  

For  t  »  ,*(k),  the  third  term  in  (7.95)  can  be  neglected  and  8~ obeys 
..  .  
8~ +  3H 8~ =  - V" (tPo)8~. (7.98)  
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We  also  know  that  t/Io  obeys  (7.33):  

(fio  +  3H~ = -V'(t/Io).  (7.99)  

Consequently,  
a2  •  a .  "  .  
at2  (t/Io)  + 3H  a/flo)  = - V  (t/Io;  )(t/Io)  (7.100)  

so  that  8~ obeys  the  same  equation  as  ~ when  H  is  nearly  constant,  as  it  will  be  
during  the  period  of  slow  roll.  Thus,  8~(t, k)  must  be  proportional  to  ~ with  a  
k-dependent constant  of proportionality which we  write  as  -8i(k):  

8~(t, k)  =  -8i(k)~(t). (7.101)  

Substituting  into  (7.93),  

t/J(t,  x)  = t/Io(t)  - ch(x)~(t) (7.102)  

where  

8T(X)  =  J d3keik.z 8i(k).  (7.103)  

To  first  order  in  8T,  
t/J(t,  x)  =  t/Io(t  - 8T(X».  (7.104)  

Thus,  the  scalar  field  fluctuations  introduce  a  spatial  dependence  into  the  classical  
field  t/Io(t)  which  is  of  the  form  of  a  spatially-dependent  time  lag.  Also,  for  
t  «  t*,  the  V" (t/Io)  term  may  be  neglected  and  8~ is  just  the  quantum  fluctuation  
of  a  free  massless  scalar  field  in  de  Sitter  space,  which  is  known  to  be  

- H 8t/J(t,  k)  =  --(1  +  R-2k2 H-2e-2H1) 1/2  (7.105) 
411"3/2  0  .  

In  this  limit,  the  equation  obeyed  by  8~(t, k)  is  identical  to  (7.77)  and  8~(t, k)  
is  the  same  as  11/Ikl  up  to  a  normalization  factor,  as  can  be  seen  from  (7.86).  
The  normalization  is  determined  by  the  requirement  that  8~(t, k)  is  the  rms  
fluctuation  [14],  so  that  

8~(t, k)2  =  (2: Y 11/Id.  (7.106)  

Perturbations  in  a  scalar  field  will  produce  density  perturbations  because  the  
potential  energy  V(t/J)  is  modified  by  perturbations  in  t/J'  Thus,  

8p  = 8V  =  V'(t/Io)8~. (7.107)  

A  calculation  of  the  evolution  of  the  density  perturbations  using  the  formalism  
of  Olson  [14,17]  shows  that  when  the  comoving  scale  Ikl- I  /  R(I)  crosses  back  
inside  the  horizon,  

8p  = 4H8i(k).  (7.108) 
p  
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We  may  estimate  8i(k)  by  assuming  that  both  the  t  »  t*(k)  and  t  «  t*(k)  
expressions  for  8~(t, k)  are  tolerable  approximations  for  t  ~ t*(k).  Equating  
(7.101)  and  (7.105)  att  =  t*  (k)  gives  

8i(t*  k)  =  -f!  (1  +  R-2k2H-2e-2Ht*)1/2  
,  4rr3/2t/Jd..t*)  0  

=  -'! 	 [I  +  H-2VI/(t/Jd..t*»]1/2.  (7.109) 
4rr3/2cf>o(t*)  

When  the  slow-roll  conditions  are  satisfied,  

VI/(cf>o)  «  H2 	 (7.110)  

and  we  have  
-H  

(7.111) 8i(t*,k)  ~ 4rr 3/2<bo(t*)  

Then  
8p  _H2(t*)  

(7.112) 
P  - rr 3/2<bo(t*)'  

In  practice,  t*  (k)  is  a  few  Hubble  times  after  the  time  when  the  comoving  
wavelength  k- I  crossed  outside  the  horizon.  In  evaluating  (7.112),  we  
shall  always  identify  t*(k)  with  the  horizon  crossing  time  given  by  k  =  
R(t*(k»H (t*(k».  Then (7.112)  is  consistent  to  within  a  factor  of  order  one  with  
other,  more  rigorous,  treatments  [15,  16].  

The  COBE  observations  require  that  

8p  '"  2  x  IO-s.  (7.113) 
p  

This  allows  us  to  estimate  the  energy  scale  of  the  inflationary  potential  V(cp).  
Using  (7.41)  and  (7.47),  we  have  

8p  "'mp3~~~?~:2 	 (7.114) 
p  

Then,  using  (7.113),  it  follows  that  

m  VI(A,»)1/2 
V(cp)I/4",  (	 P  'I'  (1016_10 17 )  GeV.  (7.115) 

V(cp)  

Also,  from  the  slow-roll  condition  (7.46),  

mpVI(cp»)1/2 
(	 (7.116) V(cp)  «3.5.  

Thus,  we  expect  the  energy  scale  of  the  inflationary  potential  is  given  by  

V(cp)  1/4  '"  (1016_10 17)  GeV 	 (7.117)  

though  it  could  be  less  if  the  inflationary  potential  is  very  flat.  
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7.8  A worked   example  

The  discussion  of  previous  sections  may  be  illustrated  by  the  following  example  
of  a  suitable  effective  potential  for  inflation  due  to  Steinhardt  and  Turner  [5].  
Consider  the  potential  

v  =  Vo  - fJ,;3  + }.,;4  (7.118)  

where  Vo,  ,;  and  }.  are  constants  with  fJ,  }.  >  O.  It  is  assumed  that  the  inflaton  field  
,;  starts  rolling  from,;  =  0,  possibly  because  ,;  was  zero  in  a  high-temperature  
phase  where  some  symmetry  was  restored.  In  that  case,  slow  roll  began  at  
some  lower  temperature  after  the  high-temperature  phase  ceased  to  be  the  stable  
vacuum.  It  is  also  assumed  that  V  is  zero  at  the  absolute  minimum  to  which  ,;  
rolls,  corresponding  to  zero  cosmological  constant.  At  the  absolute  minimum,  

3fJ  _  
,;  =  4}"  =  a  (7.119)  

and  V(a)  =  0  requires  that  
27fJ4  

(7.120) Vo  =  256}.,3  

When,;  ~ 4Jo  =  0,  (7.41)  then  implies  that  

2  2  97rfJ4_2  
H  =  Ho  =  32}.3mp  •  (7.121)  

The  slow-roll  condition  (7.45)  implies  that  slow  roll  occurs  for,;  in  the  range  

o ~ ,;  <  277rfJ4  -2  (7.122) '"  64}.,3  m p  ==';e  

where  it  has  been  assumed  that,;  «  a  in  the  slow-roll  region.  The  second  slow­
roll  condition  (7.46)  is  automatically  satisfied  whenever  

V"(,;)  ......  V'(,;) (7.123) ,;  

and  I'; I is at  least one order  of magnitude less than m p.  This  is  true  here  because  

V"(,;)  ~ -2V'(,;)  (7.124) ,;  

when';  «  a  ~ mp.  It  is  being  assumed  that  a  is  less  than  mp  so  that  we  do  
not  have  to  consider  the  effects  of  quantum  gravity.  Following  (7.119),  this  is  
obviously  arranged  for  

fJ  $  ~}.,mp. (7.125)  
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To  avoid  de  Sitter  fluctuations  driving  tP  across  the  flat  region  faster  than  
it  would  roll  semi-ciassically.  we  need  a  width  AtP  for  the  flat  region  with  the  
property  (7.91).  Combining  this  with  (7.122)  leads  to  

fJ 	 >  8  N 1/2).,3I2mp.  (7.126) 
'"  9./i7r3/ 2  e  

The  criterion  for  sufficient  inflation  (7.57)  yields  

fJ>  128  (32  )1/2  'A3/2mp  (7.127) 
'"  97r  

where  IV" (tPi)  I  has  been  evaluated  at  tPi  ....,  Ho  instead  of  tPi  ....,  0  to  allow  for  
quantum  fluctuations  and  Ne  has  been  taken  to  be  about  64.  The  condition  (7.126)  
is  clearly  satisfied  when  (7.127)  is.  

For  density  fluctuations  of  the  order  required  by  COBE,  (7.112)  and  (7.113)  
imply  that  

-H2(t*) 
.  '"  10-'. 	 (7.128) 

7r 3/ 2t/Jo(t*)  

With  the  aid  of (7.34),  this  leads  to  

10' H3(te)  
(7.129) fJ"'"  7r3/ 2tP2(te )  

if t*  ~ te.  the  time  at  which  slow  roll  ends.  With  tPe  given  by  (7.122)  and  

2  87r  -2  
He  ~ 3 mp  Vo 	 (7.130)  

using  (7.41), and   assuming  that  fJ/'Amp  ;S  I  (which  will  turn  out to   be  the  case),  
we  then  find  that  

fJ  '" 8.5   x  loJA3/2mp.  (7.131)  

In  practice, this   is  not a  particularly  good  approximation  because  ~  is not  constant   
and  ~(t·) <  ~(te). A  more  careful  calculation  [5]  gives  a  value  of fJ   several  
orders  of magnitude   larger.  Note  that  even  for  the  smaller  value  of fJ   given  by  
(7.131),  the  constraint for   sufficient  inflation  (7.127)  is  satisfied  with  two  orders  
of magnitude   in  hand  and  the  de  Sitter fluctuation   constraint  (7.126)  is  satisfied  
with  four  orders  of magnitude   in  hand.  Combining  (7.131)  with  the  condition  
(7.125) fora   to  be  less  than  mp, we   find  that  

A <   2.5  x  10-8•  (7.132)  

Then (7.  131)  implies  that   

~ -I <   13 (7.133)  Amp  '"  .  

so  that fJ  / Am p   ;S  I. as   assumed earlier.   
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7.9  Complex  inflaton  field  

In  previous  sections.  we  have  been  assuming  that  the  inflaton  field  f/J  is  a  real  
scalar  field.  A simple  extension  is  to  take  r/J  to  be  a  complex  scalar  field  [18]  with  
the  Lagrangian  density  

c  =  aJLf/JaJLf/J*  - V (f/J.  f/J*).  (7.134)  

For  a  homogeneous  field.  the  Euler-Lagrange  equations  are  then  

..  .  av  
f/J+3Hf/J+-=O (7.135) 

af/J*  

with  the  Hubble  constant  given  by  

H2  =  81r  m;2 V (f/J,  f/J*).  (7.136) 
3  

When  the  energy  is  dominated  by  the  potential  energy,  

.  I  av 
f/JI  =  --- (7.137) 

6H  af/JI  
.  I  av  

f/J2  = --- (7.138) 
6H  af/J2  

where  we  have  separated  f/J  into  its  real  and  imaginary  parts  

f/J  =  ~I + if/J2.  (7.139)  

For  the  slow-roll  approximation  to  be  valid,  

~I «I  (7.140) I 3H~1 
(7.141) 1-£1  «l. 

3Hf/J2  

These  may  be  cast  as  the  sufficient  conditions  (exercise  4)  

21  VII  VI  +  V2  VI21  48  (7.142) mp  VVI  «1r  

21  V22  V2  +  VI  Vl21  48  (7.143) mp  VV2  «1r  

V2  +  \1,21 m2  1  2« 961r  (7.144) p  1  V2  

where  Va  ==  av /a~a(a =  1,2)  etc.  The  last  condition  ensures  that  the  kinetic  
tenn  may  be  neglected  compared  with  the potential  tenn  in  the  vacuum  energy  
density.  
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If  slow  roll  occurs  from  (tPl.  4>2)  =  (tPlo.4>20)  close  to  a  saddle  point  or  
minimum of the effective potential. then  we may write  

VI  :::::::  Vlo  +  Vllo(tPl  - 4>10)  +  VI20(4)2  - 4>20)  (7.145)  

V2  :::::::  V20  +  VI20(tPl  - tPlo)  +  V220(4)2  - 4>20).  (7.146)  

In  terms  of the  displacements,  

Xa=tPa-tPao  (a  =  1.2)  (7.147)  

and.  correct  to  linear  order  in  Xa.  the  slow-roll  equations  may  be  written  as  

X=A-MX  (7.148)  

with  

X=  (~~) A  =  _1  (Vlo)  (7.149) 
6H  V20  

and  

M  =  _1_  (VIIO  VI20).  (7.150) 
6H  VI20  V220  

After  diagonalizing  M.  we  find  that  the  displacements  Xa  are  superpositions  of  
eigensolutions  with time  dependence  e-A,t  where  

ILi  
(i  =  1.2)  (7.151) A.i  =  6H  

with  

2ILI.2  =  Vllo  +  V220  ±  J(Vllo  - V220)2  +4vf20•  (7.152)  

The number  of e-folds of inflation may then  be written as  

Nt  =  2Vomin(-ILII.  -IL2"I)  (7.153)  

if  ILl  and  IL2  are  both  negative.  Otherwise.  Nt  is  controlled  by  the  negative  IL;.  It  
is  now  necessary  to  have  the  potential  sufficiently  flat  in  all  directions  that  there  
is  slow  roll  no  matter  what  direction  of  rolJ  occurs  off  the  maximum  (or  saddle  
point),  

7.10  Chaotic  inflation  

Up  to  this  point.  it  has  been  assumed  that  the  initial  conditions  for  slow-roll  
inflation  are  thermal.  By  this  we  mean  that  the  field  tP  was  at  the  minimum  of  
the  effective  potential  for  a  high-temperature  phase  until  this  minimum  ceased  
to  be  the  absolute  minimum.  Thereafter,  tP  appeared  in  the  flat  region  of  
the  potential.  either  by  quantum  mechanical  or  thermal  tunnelling  out  of  the  
metastable  minimum  or  after  the  metastable  minimum  had  ceased  to  exist.  If  
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the  flat  region  is  in  the  vicinity  of  a  maximum  or  turning  point  of  the  effective  
potential. some  fine  tuning  of the  initial conditions may  be required  if tfJ  is  to  start  
out  in  the  flat  region.  

An  alternative  possibility  [19]  is  that  the  initial  conditions  are  provided  by  a  
chaotic  quantum  state  which  existed  for  times  t  ~ Ip.  where  

-I tp  =mp  (7.154)  

is  the  Planck  time.  A  simple  chaotic  inflation  model  can  be  developed  using  the  
Lagrangian  density  for  the  inflaton  field  tfJ.  

c  =  !a"t/>a"t/>  - V(t/»  (7.155)  

with  

V(t/»  =  ~At/>4 (7.156) 
4  

and  A  «  1.  so  that  the  potential  is  flat.  At  the  Planck  time.  the  uncertainty  
principle  implies  that  V(t/»  can  only  be  measured  with  an  accuracy  ofm~. Thus.  
instead  of tfJ  being  fixed  at  the  minimum  of  V  (t/J)  at  t/J  =  0  in  all  regions  of space.  
we  should  expect  t/>  to  take  values  in  the  range  

_~< <  mp  (7.157) AI/4  '"  t/>  '"  AI/4  

in  various  regions  of  space  (domains).  These  are  the  initial  conditions  for  the  
domains.  The  evolution  of  tfJ  for  t  >  t p  will  permit  a  classical  description,  
provided  

V(t/»  ~m~ a  ""a"""  <  m4  (7.158) 
"."  ."  ""  P  

in  all  domains.  Since  V(tfJ)  is.  in  general.  non-zero,  the  various  domains  will  
undergo  varying  amounts  of exponential  expansion  (inflation).  

Consider  one  such  domain  with  an  initial  homogeneous  field  t/>(tp).  (As  
observed  after  (7.94),  spatial  dependence  of t/>  is  in  any  case  damped  out  rapidly  
by  the  exponential  growth  of R(t).}  For the potential  (7.156), the Hubble constant  
of  (7.41)  is  

2  )1/2 

H  =  ( 3:7rA  t/J2m pl •  (7.159)  

Neglecting  the  ~ term  in  (7.33)  for  slow  roll  

,p  =  _  (~)1/2 (7.160) 6:7r  mpt/J  

so  that  

</>  ~ </>(I,)exp  [ - (6~)'" m,(1  - Ip) l  (7.161)  
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The  inflationary  growth  of the  scale  factor  R(t)  is  now  given  by  (7.49)  as  

In  R(t)  = H  dt.  (7.162) 
R(tp)  tp  

Then, substituting  the   solution (7.161  )for  tf>  into the  expression  (7.159)  leads  to   

R(t)   -­ = 1r  (  [( 2A  In 2tf>2(tp)  1- exp  - - )1/2 mp(t  ­ tp) ])  .  (7.163)  
R~) mp  ~ 

For I   ,...,  lp, this   may  be approximated  by   

R(I)  '" R(I,)  exp  [  (:~ )'"  .'(1,)(1 ­ ")] .   (7.164)  

From (7.161).  we   see that  the   motion is   slow  roll  over a   period  

A  
( 

)-1/
T'" -

2 
m 
_ 

 1  
 

(7.165) 61r  p  

during which  time   we  see from   (7.164) that  there  are   

Ne  = 21r  (tf>~;)y (7.166)  

e-folds of inflation.  Thus, there are at least 64  e-folds of inflation provided  

tf>(lp)  ~ 3.2mp.  (7.167)  

This value  is  in   the  rquired  range  (7.157) provided   

A ~ 10-2•  (7.168)  

A  region of  the  universe  with  such a   value of  tf>  (t p )   could. therefore.  develop  into   
a  universe  in  which  the  horizon and   flatness  problems are   solved,  as required  for   
the  universe we   occupy.  

The observed  value  of  !Jp /  p   puts a  more  stringent constraint on the  size of  A.  
We  estimate !Jp  / p   from  (7.112) with   tb  given by  (7.160).   H  given by  (7.159)  and   
tf>(t*)  given by  (7.207)  with   p  = 4.  Then  

!Jp  =  2J6I [Ne (tf>(t*))]3 /2  (7.169) 
p  31r 2  

where. as   in section  7.12.  Ne   (tf>(t*»  is the  number  of e-folds of inflation occurring   
after cosmologically  interesting  

e: 
scales   leave  the  horizon.  Thus.  

A =   Y 3:4 
[Ne (t/>(t*))]-3  .   (7.l70) 

1t  
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For 18p/  pi  '"  10-5  and  Ne(~(t·» = 50, we   have  

A::::  3  x  10-14•  (7.171)  

The  spectral  index discussed   in  section 7.12  has  the   value given  by   

n(k) - I  = -0.06   (7.172)  

7.11  Hybrid inflation   

In  the  slow-roll  inflation  models  discussed  so  far,  the  inflaton  ~ which  is  
undergoing slow   roll  is also   responsible for  the   vacuum energy  density   that drives   
the  inflationary  expansion  of the   universe.  In  'hybrid'  inflation  [20],  two  (real)  
scalar  fields  ~ and  '"  are  involved.  The  field  ~ undergoes  slow  roll  but  most  of  
the  vacuum energy  is  due  to  the   presence of",.  When   the  value  of", drops  below   
some  critical  value ~c.  the  field",  is  destabilized and   it rolls   from  a  vacuum  with  
positive  energy  density  to  the  vacuum  with  zero energy  density.  so  that  inflation  
ends.  

The simple   original  model,  due  to  Linde [20]   has  a  potential  of the  form  

v  = !m2~2 + Al   (",2  _  M2)2  + A2   ",2~2 (7.173) 
2 4  4  

so that   

v  = Vo   +  !m2~2 _  !m3. ",2  + 12  ",2~2  +  ~",4 (7.174) 
2  2"  4  4  

where  
Al  4 

Vo=-M and  m~ =  AIM2.  (7.175)  
4  

The field   '" has   an  effective mass-squared   

2  2 2  
melJ  =  A2~ - mt·  (7.176)  

For",2  >  ~; ==  m~/A2. the  effective  mass-squared  is  positive  and  the  only  
minimum of the effective  potential in   the '" direction  is  at '"  =   O.  The parameters   
may  be  chosen  [20]  such  that  the  curvature  of the   effective  potential  is  much  
greater  in  the  ",-direction  than  in  the  ~-direction. so  that,  initially,  '"  rolls  to  
'" =   0  while ",2   remains larger  than  ~;.  After a period of  slow  roll,  ~2 eventually  
drops  below  ~;. At  that  point,  '"  starts  to  roll  towards  a  true  minimum  of the   
effective potential   which  is  at  

~=o (7.177) '" =   ±M.  

This marks the end of  the inflationary period.  In the slow-roll region,  

V(",)  ::::  Vo  + !m2~2.  (7.178)  
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Thus,  using  (7.58),  
81TVo  

Ne  ~ 22  (7.]79)  
mpm  

if Vo   is  the dominant  tenn.   Ne  can be adjusted to be greater than 64.   For example,  
for  Vo  ~ (1016  GeV)4,  we  have  Ne  ~ 64  for  

m  :s  1013  GeV.  (7.180)  

The parameter,p~  =  m~/A2 gives enough  freedom   to  obtain  the observed   value  

for  !JP/ p.   (In  the  previous example,pc   ~ 3  x  1017  GeV.)  We  refer the   reader to   
the paper by Linde  [20)  and the  book of  Liddle and Lyth  in  the general references  
for this  chapter,  for  more   detail.  

7.12  The  spectral  index  

The  dependence  of the   density  perturbation  !Jp/ p   on  the  scale  k  will  eventually  
allow  different  inflationary  models  to  be distinguished   by observations.   Let  us  
define  

P(k)  ==  (!J P)2 =  1T-3 (~2(t*(k»)2  (7.18] )   
p  t/Jo(t*(k»  

where  we have   used  (7.112).  (P(k)  is  proportional to  the   'power spectrum'.) The   
spectral  index n(k)  is   defined  by  

n(k)  _  1 ==   din P(k)   (7.] 82)  

If n(k)  is a   constant,  this  reduces to   

P(k)  ex  kn- I  (7.183)  

so that  n   =  I  corresponds to   a  scale-independent spectrum.   
The spectral   index  may  be  evaluated  using  the  slow-roll  conditions.  Slow­

roll  parameters ~(,p)  and 1I(,p)   may be   defined  by  

f(,p)  ==  ~M2 (VI(,p»)2 (7.184)  
2  p  V(,p)  

and  

1I(,p)  ==  M2  V"(,p) 
p  -­ (7.185)  

V(,p)  

where  
m2  1 2  _....1..=  __ .  (7.186) Mp  =  81T  81TGN  
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The  derivatives  dE/dlnk  and  d'7/dlnk  are  required  for  the  discussion  of  n(k).  
From (7.34),  during  slow   roll,  

~dtP. (7.187) dl  = - V'(tP)  

Moreover.  the  right-hand  side  of (7.181)   is  to  be  evaluated,  as  discussed  after  
(7.112), when   

k  = R(t*(k»H(t*(k».   (7.188)  

During slow-roll  inflation,  the   rate  of change of  H  is small   compared with  the   rate  
of change of  R   and  so  

dlnk =  Hdt.   (7.189)  

Combining this   with (7.187)  gives   

d  1,  d  
(7.190) dlnk  = -3H2  V  (tP)dtP·  

Then, using  (7.41)  for   H2,  

d  2  V'(tP)  d  
(7.191) dlnk  = -Mp  V(tP)   dtP·  

With the aid of  this,  we  may  now  evaluate the required derivatives of  the  slow-roll  
parameters (7.184)  and  (7.185),  with   the  result  

-dE  =  2 
-2(E'7 - 2E  )  (7.192) 

dlnk  

and  
d'7  

(7.193) din k   = 2E'7  - ~2 
where  

~2 ==  M4  V'(tP)V"(tP)  (7.194) 
p  V (fP)2  

Returning  to  (7.181)  and  (7.182),  we  may  first  simplify  P(k)  using  (7.34)  
and  (7.41) to  obtain   

P(k)  = _1_  V(tP).   (7.195) 
611"3E  M4 p  

Then differentiating with  the  aid of  (7.191) gives [21]  

n(k) - 1 =  -6E +  2'7.  (7.196)  

Being slow-roll   parameters. E(tP)   and '7(tP)   are  small.  Consequently,  

In(k)  - 11« 1   (7.197)  
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and  n(k)  differs  little  from  l.  The  deviation  of  n(k)  from  I  at  values  of  k  of  
interest  (k- I  between  the  present  Hubble  radius  of  3000  Mpc  and  the  smallest  
scale  for  large-scale  structure  observations  of  I  Mpc)  is  determined  by  the  slow­
roll  parameters  e(tP)  and  T/(tP)  for  the  given  model.  The  variation  of n(k)  with  k  
is  also  easily  calculated  using  (7.192)  and  (7.193)  to  be  [22]  

d  Inn(k)  =  16E7I- 24E2  _  2e.  (7.198)  
dlnk  

The  spectral  index  distinguishes  models  of inflation.  Consider,  for  example,  
an  inflationary  potential  of the  form  

v (tP)  =  AtPP  (p  >  0).  (7.199)  

(The  chaotic-inflation  potential  (7.156)  is  a  special  case  with  p  = 4.)  Then  

e(tP)  =  !M~p2tP-2 and  71(tP)  =  M~p(p - l)tP-2  (7.200)  

so  that  
n(k)  -I  =  -M~p(p+2)tP-2 (7.201)  

with  tP  to  be  evaluated  at  t  =  t·(k)  for  scales  k  of  interest.  The  key  thing  is  the  
number  of e-folds  of  inflation  that  occurs  after  cosmologically  interesting  scales  
leave  the  horizon.  From  (7.51),  what  we  require  is  

Ne(tP(t·»  = _M;2  f~ V(tP)  dtP  (7.202) 
J~(t·) V'(tP)  

where  tPe  corresponds  to  the  end  of slow  roll.  In  the  present  model,  

V(tP)  _I  
(7.203) V'(tP)  =  p  tP  

leading  to  
tP2(t·)  - tP~ =  2Ne(tP(t·»pM~. (7.204)  

Slow  roll  ends  when  e(tP)  .....  I  and,  from  (7.200),  we  see  that  this  happens  when  

tP  =  tPe  .....  pMp.  (7.205)  

Thus,  
tP2(t·)  ::::  p2M~ + 2Ne(tP(t·»pM~. (7.206)  

For  modest  values  of  p  and  large  values  of  Ne(tP(t·»,  

tP(t·)  ::::  J2Ne (tPW»pMp  (7.207)  

so  that  from  (7.20 I)  
2+p 

n(k)  - I  ::::  (7.208) 
2Ne(tPW»  

For  example  [23],  if  Ne  (tP(t·»  = 50,  we  have  

2+p 
n(k)  - 1  :::: --­ (7.209) 

lOO  
and  n(k)  at  observable  scales  differs  from  1  by  a  few  percent.  
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7.13  Exercises  

I.  Obtain  an  alternative  derivation  of  the  equation  of  motion  (7.33)  for  q,  from  
the  energy-momentum  conservation  equation.  

2.  Generalize  the  equation  of  motion  for  the  inftation  field  q,(t,  x)  to  include  
spatial  variation  (7.94).  

3.  Redo  the  calculations  of section  7.8  for  the  potential  

v  =  Vo  - aq,2  +  Aq,4  with  a,A  >  0  

4. 	 Derive  the  suffiicient  conditions  (7.142)  to  (7.144)  for  the  slow  roll  for  a  
complex  inftation  field.  
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chapter  are:  

• 	 Kolb  E  Wand  Turner  M  S  1990  The  Early  Universe  (Reading,  MA:  
Addison-Wesley)  

• 	 Liddle  A  R  and  Lyth  D  H  2000  Cosmological  Inflation  and  Large-Scale  
Structure  (Cambridge:  Cambridge  University  Press)  

• 	 Olive  K A  1990  Inflation  Phys.  Rep.  190  307  
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ChapterS 

Inflation in supergravity 

8.1 Introduction 

In order for new inflation (slow-roll inflation) to produce sufficient e-folds of 
inflation, it is necessary for the effective potential for the inflaton to be very 
flat near the point where slow roll begins. In general, even if the tree-level 
potential has this property, this flatness may be lost once radiative corrections 
are included. For this reason, it is advantageous in constructing models of 
inflation to employ a supersymmetric theory where cancellations of radiative 
corrections are enforced by supersymmetry. If we want a supersymmetric theory 
that contains gravity, the natural approach, as discussed in section 2.8, is to 
construct a locally supersymmetric theory (supergravity). Once a superpotential 
and a Kabler potential have been chosen for the inflaton field, the Lagrangian 
terms and the effective potential for the inflaton follow. 

As we shall see, viable inflationary theories can be constructed with simple 
choices of superpotentials and Kabler potentials. The positive value of the 
potential required for inflation may arise either from the first term in (2.156), 
the F-term, or from the second term in (2.156), the D-term, in the case that the 
inflaton is coupled to fields charged under a U (1) gauge symmetry. Theories of 
chaotic inflation and hybrid inflation may also be constructed. 

There are two potential problems arising from supergravity models of 
inflation which will be addressed in section 8.5 and section 8.6. The first 
is that gravitons (whose density was rendered negligible by inflation) may be 
produced by reheating after inflation. It is necessary to arrange that the reheating 
temperature is such that the gravitons do not have a serious effect on the 
abundances of deuterium and of 3He relative to 4He abundance. 

The second problem (the so-called 'Polonyi' problem) results from the 
presence in supergravity theories of scalar fields with only gravitational strength 
interactions, which release the energy stored in their expectation values at very 
late times. This can lead to negligibly low helium and deuterium abundances at 
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temperatures  too  low  for  the  necessary  abundances  to  be  recreated.  It  can  also  
lead  to  too  Iowa  baryon  number  density.  

8.2  Models  of supergravity inflation   

The  key  thing  we  require  to  study  inflation  is  the  effective  potential  for  the  inflaton  
field,  which  we  assume  to  be  a  gauge-singlet  scalar  field~. If  we  also  assume  
minimal  kinetic  terms  for  ~ arising  from  (2.151),  then  the  effective  potential  is  of  
the  form  

(8.1) v=e~·~(I~; +~.wr -3IWI2)  

as  in  (2.152),  in  units  where  Mp  of (2.145) is one.  In general  [I], we may consider  
a  superpotential  which  is  a  power  series  in  ~, 

00  

W(~) =  JL2  ~::>n~n (8.2)  
n=O  

where,  as  usual,  we  are  not  distinguishing  notationally  between  the  chiral  
superfield  and  the  scalar  field  in  that  supermultiplet.  When  the  expectation  value  
of  ~ is  real,  the  explicit  effective  potential  corresponding  to  the  superpotential  
(8.2)  is  (exercise  I)  

v  =  JL4e~2[A~ - 3AO  + 4AI  (A2  - Ao)~ 
+  (A~ - A~ +  4A~ - 2A2Ao  +  6AIA3)~2 +  2(AlAo  +  6A2A3  +  4AIA4)~3 
+  (l.~ +  A~ +  9A~ + 2A21.o  +  2AIA3  +  2AoA4  +  16A2A4  +  IOAIAS)~4 
+  ... ].  (8.3)  

A  particularly  simple  case  [2]  is  to  take  W(~) quadratic  in~: 

W(~) =  JL2(1.o  + AI~ + A2~2). (8.4)  

The  form  of  W(~) is  further  restricted  by  the  requirement  of  the  existence  of  
a  supersymmetry-preserving  minimum  of  V(~) with  V  =  0  for  the  following  
reasons.  We  have  seen  in  section  7.7  that  the  energy  scale  of  the  inflationary  
potential  is  expected  to  be  of  order  1016_1017  GeV.  After  inflation  has  occurred,  
~ rolls  to  a  minimum  of  this  potential.  This  minimum  should  have  V  =  0  
because  otherwise  there  would  be  a  vacuum  energy  on  the  1016_1017  GeV  scale  
which  could  not  be  cancelled  by  later  supersymmetry  breaking  on  the  electroweak  
scale.  There  would  then  be  a  large  cosmological  constant.  This  minimum  
should  be  a  supersymmetry-preserving  minimum  because  otherwise  there  would  
be  supersymmetry  breaking  on  a  scale  too  large  for  the  hierarchy  problem  to  
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be  solved.  Let  this  minimum  be  at  tP  =  a.  From  (2.158),  supersymmetry  
conservation  requires  

aw  
ai+t/>W  =0.  (8.5)  

From  (8.1),  V  = 0  requires,  in  addition,  that  W  =  O.  Thus,  we  require  that  

aw  =  w =0  at</)=a.  (8.6) 
atP  

In  general,  we  require  

00  00  

LJ..n(ln =0   and  LnJ..n(ln-1  = O.  (8.7)  
n=O  11=0  

In  the  special case  (8.4),  these   lead  to  

J..I  
a=-- and  4l.oJ..2  = Af.  (8.8) 

2A2  

Then,  
W(tP)  = IL2J..2(tP  - a)2.  (8.9)  

Then, from   (8.1) 

e.
the  effective  potential  corresponding  to  (8.9)  is   (exercise 2)   

V  =  2 IL4J..~[tP6 - 4atPS +  (00 2 +  I)</)4   - 4a3t/>3  +  
+ (a 4 - 002 +  4)</)2  + 8a«(l2  - l)tP  + (12(4  - 3(12)].  (8.10)  

Assuming that  slow  roll  occurs  from  close  to   the origin, we  need   

V' (0)  = O.  (8.11 )   

Then  
a«(l2  - I) =  o.  (8.12)  

For the   minimum not  to   be  at  the  origin  (since tP   must roll   from  a  maximum), we   
do not   want a   =  O.  Thus, a   must be  ±  I   and  we take   

(I  = 1  (8.13)  

without loss  of  generality.  Then (8.9)   becomes  

W(tP)  =  IL3J..2(t/>  - 1)2  (8.14)  

(still  in  units where   Mp  =  1)  and (8.10)  is   

V(tP)  = e~IL4A~(l - tP2 - 4</)3  + 7</)4  - 44>s  + ,;6).  (8.15)  
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Expanding  e~ in  powers  of  t/J2  for  the  purpose  of  studying  the  slow-roll  region  
close  to  the  origin,  

V(t/J)  = #lh.~(l - 44>3  +  ¥t/J4  - &/>s  +  ¥t/J6  +  ... ).  (8.16)  

It  follows  that  
Vo  ==  V(O)  =  IL4}.~. (8.17)  

Then,  the  Hubble  parameter  H  relevant  to  slow  roll  is  given  by  (7.41)  and,  in  units  
with  Mp  =  I,  

H 2  .....  H2  _  1  Vi  _  1  4,2  (8.18) - 0 - J  0  - JIL  11.2  

recalling  that  m~ = 8:rr  M~. Also,  in  units  with  Mp  =  I,  the  slow-roll  condition  
(7.45) is   

IV" (t/J)I  
(8.19) V(t/J)  «3  

and the  slow-roll   condition (7.46)  is   

V'(t/J»)2  ( (8.20) V(t/J)  «6.  

With  V (t/J)  given  by (8.16)   and  with  t/J  close  to  zero,  (8.19) requires  that t/J   is  in  
the  range  

Mp  
O~t/J ~ 8  ==t/Je  (8.21) 

(8.20)  is  automatically  satisfied  whenever  V"(t/J)  .....  V'(t/J)/t/J  and  It/JI  is  at  least  
an  order of  magnitude   less  than  m p.  We  certainly  satisfy  the  latter requirement   
because t/Je   =  iMp and,   for small   t/J,  the  former condition  is  also  satisfied.   

To  avoid  de  Sitter  fluctuations  driving  t/J  across  the  flat  region  too  rapidly  
(faster than   it  would  roll  semi-classically)  we  need  a  width  !1t/J  =  t/Je  for  the  flat  
region  with  the property (7.91).   With  the  Hubble constant  given  by  (8.18),  then   

3:rr2 
,,4}.2  <  __ .  (8.22) 
,...  2  16Ne  

If we  are  able to   arrange that   Ne  .....  64,  then  this  requires that   

J.L 21}.21  <  0.17  (8.23)  

or,  equivalently,  
IHol  <  0.098.  (8.24)  

Turning next to the  number of e-folds of inflation, (7.57) requires  that 
 

Ne  .....  _ 3H2 
 
(8.25)  
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To  allow  for quantum   fluctations  V"(tPi)  should  be  evaluated  at tPi   ,.."  Ho  rather  
than  tPi  ,.."  O.  (See, for  example,  [3].)   A  rough estimate   may  be  made by  keeping   
only the   term  linear in   tP  in  V'(tP).  Then,  

N~"'" IHol,.."  1  (S.26)  
SIL4A~ SJ31L2IA21'  

N~ ,.."  64 is   achieved for   

1L21A21::::::  1.13  x  10-3•  (S.27)  

This  value  of  1L21A21  satisfies  with  ease  the  bound  (S.23)  to  avoid  de  Sitter  
fluctuations  driving tP   across the   flat  region  too  rapidly.  

Using  (7.112)  and  (7.113),  density  fluctuations  of the   order required  by  the   
COBE observations  imply   that  

H2~t·) ,.."  2  x  10-'  (8.28)  
7r 3/ 2t/)o(t·)  

(see  [3]).  We  certainly  have  t·  ~ t~, the  time  at  which  slow  roll  ends.  From  
(7.34),  

;.  = _ V'(tP)   
'*'  (8.29) 3H  .  

If we make  a   rough estimate  of  V'  (tP)  from  the  tenn quadratic  in   tP,  then  

V'(tP~) =  -121L4A~tP:. (8.30)  

If we also   approximate  H (t~) by  Ho  of (S.18),  

•  ';;2  2  
tP{t~) ::::::  4v31L  IA2ItP~. (8.31)  

With  these approximations,   

H2(t~) 1L21A21  

7r3/2~(t~) (8.32) 
::::::  - 12J31L2IA21q;~' 

With  t  ,.."  t~ and  tPe  1/8,  the  value  of 1L21A21   consistent  with  the  density  
fluctuations  (S.28)  is  

1L21A21  ::::::  3.6  x  10-'.  (8.33)  

This  value  of 1L21A21   is  sufficiently  small  that  we  get from   (S.26)  more  than  64  
e-folds of  inflation  with ease.   The condition  (8.22)  to   avoid  de Sitter  fluctuations   
driving tP   too rapidly  across   the  flat  region is   also satisfied   with  ease.  For smaller   
values of  '., and   so of  tP('·), 1L21A21   is  even  smaller.  

To  decide whether  sufficient  inflation  occurs  in   practice,  it is   also  necessary  
to consider  the  initial  conditions,  because  sufficient  inflation  depends  on  tP   starting  
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rolling  across  the  flat  region  between  q,  =  0  and  q,  =  q,~ from  a  value  of  q,  
sufficiently  close  to  q,  =  O.  However.  if  initially  the  universe  was  in  thermal  
equilibrium.  then  thermal  effects  may  put  q,  well  into  the  region  q,  >  0  and  prevent  
enough  inflation.  This  is  referred  to  as  the  'thermal  constraint'  [4].  In  general.  
for  minimal  kinetic  terms  the  zero-temperature  effective  potential  V  derived  from  
(2.147)  is  

V  =  eG(GiGi  - 3)  (8.34)  

and  from  (2.162).  the  finite-temperature  correction  V{  to  the  effective  potential  
is  given  by  

v{  = constant  +  ~ T2eG  (G i  Gi  - 2)  (8.35)  

in  the  limit  of  a  large  number  N  of  chiral  fields.  which  is  a  reasonable  
approximation  in  practice.  If  the  finite-temperature  effects  are  not  to  destroy  the  
flatness  of the  potential.  we  must  require  that  

av{  av  
-=0=- at  q,  =  o.  (8.36) 
aq,  aq,  

For  a  single  gauge-singlet  real  scalar  field  q,  with  minimal  kinetic  terms.  so  that  
Gi  =  G i  =  G'(q,).  these  require  that  

G'(O)  = 0  (8.37)  

so  that  
V(O)  <  O.  (8.38)  

It  is  then  impossible  for  q,  to  roll  to  a  (supersymmetry-preserving)  minimum  with  
V  =  O.  Thus.  the  thermal  constraint  is  a  very  powerful  constraint.  It  may  
sometimes  be  evaded  if  the  inflaton  has  non-minimal  kinetic  terms.  

However. if a (weakly-coupled) inflaton field  q,  is out  of thennal equilibrium  
for  temperatures  below  the  Planck  scale.  then  the  initial  value  of q,  will.  in  general.  
have  a  broad  distribution  [5].  Consequently.  it  is  unlikely  that  a  randomly  chosen  
horizon  volume  will  possess  a  (smoothed-out)  value  of q,  close  enough  to  q,  =  0  
for  much  inflation  to  occur.  However.  any  horizon  volume  which  does  have  a  
value  of q,  close  to  q,  =  0  will  undergo  inflation  and.  after  inflation  has  occurred.  
most  of space  will  be  occupied  by  such  regions.  As  a  result,  we  are  very  likely  to  
find  ourselves  in  a  region  of  space  which derived  from  such  a  horizon  volume  at  
early  times.  For  this  reason.  we  shall  not  consider  ourselves  bound  by  the  thermal  
constraint.  

We consider next reheating in  the context  of this simple supergravity model.  
For  a  gauge-singlet  inflaton  field  with  only  gravitational  strength  couplings.  we  
expect  a  decay  rate  

m3 , 
r  --2'  (8.39) 

4J  Mp  
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Also,  from  the  double  derivative  of  the  effective potential,  a  mass-squared  m~ of  
the  inflaton  of order  

2  J.'41~m.  '"  _'_'"2  (8.40) 
MS  

P  

is  to  be  expected,  allowing  for  (;)  - Mp  owing to  the  effects  of quantum gravity  
and  restoring  factors  of  Mp.  Thus,  

61~ 
r.  '"  ~ (8.41) MS  .  

p  

The  reheating  temperature  of (7.72)  is  

,,3~/2
TR  - (r ...  Mp)1/2 __ _  (8.42) ."  M2 

p  

ignoring  the  difference  between  m  p  and  Mp.  Using  the  estimate  (8.33),  this  gives  

TR  - 1011  GeV.  (8.43)  

8.3  D-term supergravity  inflation   

To  arrange  for  sufficient  inflation  in  the  model  of  the  previous  section,  it  was  
necessary  to  take  ,,21A21  .....  10-3,  which  is  an  unnatural  fine-tuning  of  the  
superpotential.  This is a generic feature  of supergravity models where the positive  
value  of  the  effective  potential  during  inflation  is  due  to  a  non-zero  F  -term  in  
the  sense  that  I ~ +  t/li.  Wl 2  #:  0  in  (2.156).  (The  terminology  is  because  

a w / a;i  + t/I'.  W  is  the generalization to the supergravity context  of the auxiliary  
field  usually  denoted  by  Fi  in  the  construction  of  the  globally-supersymmetric  
Lagrangian.)  When  all  relevant  fields  are  gauge  singlet  and  assuming  minimal  
kinetic  terms,  the  effective  potential  for  the  inflaton  takes  the  form  (8.1).  There  is  
a  term  quadratic  in  ;, namely  VoI/>*t/I,  where  Vo  ==  V(O).  Keeping  only  this  term  
and  assuming  a  real  inflaton,  

V"(;)  - Vo  (8.44)  

and then,  from (8.25), the  number  of e-folds of inflation  is  

Ne  _  3H2  
(8.45) 

Wol·  

But  when  ;  :::  1/>0  :::  0,  
H2:::  iVo.  (8.46)  

Thus,  

Ne  -I.  (8.47)  
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To  obtain sufficient e-folds  of inflation generally requires  some  fine-tuning  of the  
parameters  of the  superpotential,  so  that  other  quadratic  terms  can  cancel  the  one  
displayed.  In  the  model  just discussed  in  section  8.2,  the  choice  of superpotential  
is  such  that  a  quadratic  term  in  V(4))  does  not  occur.  Nevertheless,  there  is  a  
similar  problem  because  sufficient  inflation  required  the  parameter  #L21l.21  in  the  
superpotential  to  be  :5  10-3.  

This  generic  difficulty  for  F  -term  inflation  can  be  avoided  if  the  positive  
value  of  V  required  for  inflation  originates  from  the  second  term  of  (2.156)  
(referred  to  as  the  D-term  because  it  generalizes  the  contribution  of the  auxiliary  
field  denoted  by  D  in  the  context  of  global  supersymmetry).  Because  there  is  no  
factor  of  e.*'  in  the  D-term,  the  previous  argument  does  not  apply  and  D-tenn  
inflation  [6]  does  not  suffer  from  the  generic  problem  discussed  above.  

A  simple  example  [6]  is  provided  by  the  superpotential  

W  = l.tP4>+4>- (8.48)  

where  4>  is  the  inflaton  field  and  4>±  are  two  other  scalar  fields  with  charges  ±  I  
under  a  U (I)  gauge  symmetry.  Let  the  Kabler  potential  K  be  chosen  to  have  the  
minimal  form,  as  in  (2.151),  and  let  the  gauge  kinetic  function  be  minimal,  as  in  
(2.154).  Then  

G  = 4>.4>  + 4>~4>+ +  4>~tP- + In  IWI2  (8.49)  

and  (exercise  3).  using  (2.156),  the  effective  potential  is  

V  = el.,2+1.+12+1.-12l.2[14>+4>_12(l  +  ItP12)  +  14>4>_12(1  +  14>+12)  

+  14>4>+12(1  +  14>_12)]  +  !g204>+12  -14>_12  - ~)2. (8.50)  

A  constant  ~ (the  Fayet-IIiopoulos)  term  has  been  included,  which  can  be  present  
for  a  U(I)  gauge  symmetry.  We  assume  that  ~ >  O.  It  may  be  checked  
(exercise  4)  that  (4)+.  tP-)  =  (0,0)  is  a  minimum  in  the  (4)+,  tP-)  space  when  
the  inflaton  field  4>  satisfies  

14>1  >  g,Jf  - (8.5  t) l.  =  4>c.  

For  these  minima,  we  see  that  

V  = !g2~2. (8.52)  

Thus,  the  potential  is  then  flat  so  far  as  the  inflaton  is  concerned  (and  has  a  large  
positive  curvature  in  the  4>+  and  tP- directions).  

In  a  chaotic  inflation  scenario.  we  may  assume  the  initial  condition  14>1  z:  4>c.  
Then  inflation  will  occur.  The  amount  of  inflation  will  be  very  large  because  the  
only  lack  of  flatness  in  the  effective  potential,  so  far  as  the  inflaton  is  concerned,  
is  due  to  radiative  corrections.  Note  that  the  positive  value  of  V  driving  inflation  
is  essentially  due  to  the  D-term.  
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8.4 	 Hybrid  inflation  in  supergravity  

The  hybrid  inflation  idea  discussed  in  section  7.11  may  be  extended  to  the  context  
of  supergravity.  A  simple  superpotential  which  allows  hybrid  inflation  to  be  
implemented  [7]  is  

w  = q,  0.. "'11/12  - ph  (8.53)  

where  "'I  and  "'2  are  a  pair  of  (chiral)  superfields  in  non-trivial  conjugate  
representations  of  some  non-Abelian  gauge  group  and  q,  is  a  superfield  neutral  
under  any  gauge  group.  (We  use  the  same  notation  for  superfields  and  the  scalar  
field  associated  with  them.)  Assuming  minimal  kinetic  terms,  as  in  (2.151)  and  
(2.156),  the  corresponding  effective  potential  apart  from  the  last  (0-)  terms  in  
(2.156)  deriving  from  the  non-trivial  gauge  properties  of  "'I  and  1/12,  is  as  follows  

V  = elfflI2(IFt/l12  +  IFt.l2  +  IFtzl2  - 31W12)  (8.54)  

where  

aw  
FffI  == 	 aq,  + q,*w  =  (l  +  1q,12)(>''''11/I2  -ph  (8.55)  

aw  
Ft,  == 	 a"'l  + "'i W  = >'q,(l  +  1"'112)1/12  -,.,,2"'iq,  (8.56)  

aw  
Ftz  == 	 a"'2  +  "'2  W  =  ).q,(  I  +  11/1212)"'1  - ,.,,2"'2 q,.  (8.57)  

If "'I  and  "'2  roll  rapidly  to  zero,  then  the  effective  potential  for  q,  is  

V  = e",z ,.,,4(l  - q,2  + q,4) 	 (8.58)  

since  q,  is  a  real  scalar  field  being  neutral  under  any  gauge  group.  Expanding  in  
powers  of q,2,  

V  ~ ,.,,4(l  +  1.4).  (8.59)  

The  cancellation  of  the  quadratic  term  in  q,  evades  the  generic  problem  with  F­
term  inflation  discussed  in  the  previous  section.  

It  may  be  seen  by  returning  to  the  globally  supersymmetric  theory  that  it  is  
indeed  reasonable  to  take  "'1  and  "'2  fixed  to  zero.  The  globally  supersymmetric  
effective  potential  is  (following  (2.120»  

V  =  I a W  12  1 a W  12  1 a W  12 	 (8.60) 
aq, 	 +  a"'l  +  a"'2  

=  1)."'11/12  - ,.,,212 +). 2q,2(1"'112  +  11/1212)  (8.61)  

(apart  from  the  D-terms  for  the  gauge  non-singlets  "'1  and  "'2  and  remembering  
that  q,  is  neutral.)  The  absolute  minimum  of  the  effective  potential  is  at  

q,  =  0,  
,." 	 

(8.62) "'I  =  1/12  =  .fi. .  
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However,  if  
IJ.  

4>  (8.63) >  ../l.  ==  4>c  

the  fields  1/11  and  1/Iz  have  positive  effective  squared  masses  and  are  confined  to  
1/11  = 1/Iz  = O.  The effective  masses   of 1/11   and 1/Iz   are contained  in  the   terms  

-IJ.Z)..(1/Il1/12  + 1/Ii1/l2>   + )..24>2(1/Il1/1i  + 1/121/12>.  (8.64)  

Writing  

I  I  
1/11  ==  J2(AI +  iBI)  and  1/Iz  ==  ,J2(A2 +  iB2)   (8.65)  

the  effective  mass  terms are   

!)..24>2(A~ + Bf  +  A~  + Bi)  -1J.2)"(AIA2   - BIB2)  (8.66)  

and the mass-squared eigenvalues are  ().. 24>2  ± 1J.2  ),,)/2,  both of  which  are  positive  
when 4>   >  4>c.  

Now  the  model  for  inflation  reduces  to  one  with  a  single  real  scalar inflaton   
with  potential  (8.59).  The  slow-roll  conditions  (7.45)  and  (7.46),  in  units  where  
the  reduced  Planck  mass  Mp  is  I, are   satisfied  when  

IV" -(4)) I   «  3  V'(4»)2 
and  ( (8.67) V (4))   «  6.  

With  the above  potential,  these   give 4>2   «  1 /2 and  4>2   «  1.15  respectively.  Thus,  
the  slow-roll  region is   

4>2  «  i.  (8.68)  

To  calculate  the  number  of e-folds   of inflation,   it  is  necessary  to  consider  
the  time  dependence  of 4>   during  slow  roll.  In  units  where  Mp  =  I,  (7.41)  is  
H2  =  V /3 and   in  the  slow-roll  region  V(4))  ::::  1J.4,  so  that  

IJ.Z  
H::::  .,fj.  (8.69)  

Then  (7.34)  is  
.  2  2 3  4>  =  --IJ. 4J   (8.70) 

.,fj  

which  shows that  4>   is  decreasing with   I  for 4>   >  O.  In  Mp  =  I  units,  (7.51) gives   

Ne  =  -1.1  V(4))  d4>  (8.71)  
"  V'(4))  

'"  1 (.1.-2  .1.-2)  (8.72) - 4  '1'/  - '1';  
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so,  for t/J  f  « t/Ji,   we  have  
1  -2 

N~ ~ l,t/Jf  •  (8.73)  

Thus,  what  sets  the  limit  on  the  number of  e-folds   of inflation   is  how  small  tP f  
can  get.  There  is  no  limit  set  by  slow  roll  because  we  have  slow  roll  whenever  
t/J2  «  I /2.  However, there are radiative corrections to the effective potential that  
we should  now   take into  account.   At one-loop  order,   they  are  of the form   

").2p,4  t/J  
- --In:;;- (8.74) VI-loop - 811'2  'PC  

so  that  
l. 2p,4  v,  - -I  
--t/J  (8.75) I-loop - 811'2  

This is  of the same  order  as  V' (t/J)  from the  supergravity  potential  (8.59)  (without   
radiative corrections)  when   

"'-'14; 
A.  .....  rr-. 

 (8.76) 

For smaller  values  of  t/J,  the contribution  to   V' (t/J)  in the  slow-roll  equation  due  to   
radiative corrections  is  larger  than   V' (t/J)  from supergravity  at  tree  level.   Thus, we   
must truncate  the   contribution to  N~  from rolling  in  the   uncorrected supergravity   
potential at   

~ (8.77) t/Jf  ff·  
Then  the  contribution  to  N~ from  the  period  of  slow  roll  before  radiative  
corrections become  important  is   

N. ~ '" _  rrA \-1  .  (8.78)  

This gives at least 64  e-folds of inflation  (even without including any further slow  
rolling when  radiative  corrections  have  become  important)  for   

l. S  0.05.   (8.79)  

Recalling that  M~  =  m~/81f, (7.114) and  (8.59)  lead  to   

8p  p,2  

P ~  (8.80) 
2(8rr)3/2t/J3(t·)  

in  units  where  Mp  = I.   If we  estimate t·  as   the  time  at which   we  can no  longer   
neglect radiative  corrections,  then  from  (8.76)   

t/J(t·)  ~ J 4~ (8.81) 
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and  
8p  1L2  
P (8.82)  ~  25/2(411')3)..3/2'  

The requirement  that  8p  /  p  ~ 2 x  10-5  fixes  IL  in  units  of Mp   once)..  has  been  
chosen.  For).. chosen  as   in  (8.79), we  have   

IL  $  O.05Mp.  (8.83)  

8.S  Thermal production  of  gravitinos by  reheating   

The thermal production of  gravitinos in  the early universe can cause problems, as  
discussed in   section 6.3.   At first   sight, a   possible solution  to  these   problems is  for   
the  gravitino density   to  be  diluted by  inflation.   However,  a  gravitino density  can   
be  produced by   reheating  after inflation   and  it  is  necessary  for  this  density  to  be  
low enough  that   the  problem is   not recreated.   

Gravitinos  produced by   reheating after  inflation   can  have  a  serious effect  on   
the  abundances  of deuterium   (D)  and  3He  relative  to  the  4He  abundance.  The  
problem is that  D  and  3He  can   be produced  by  photofission  from  4He  by  radiation   
from  gravitino decay.   These  relative  abundances are   known  to be   very small   and  
so  we  must avoid  gravitino  densities  sufficiently   large to  violate  these   bounds.  

The gravitino  density  "3/2   produced during   reheating  by  2  -+  2  scattering  
processes involving  gauge  bosons  and  gauginos  has  been  estimated  [8J   to  be  given  
by  

"3/2  ~ 2  x  10-13  (  TR  )  (8.84)  
"y  109  GeV  

where  T R  is the reheating temperature.  However, an estimate  of the amount of  D  
and  3He  produced by  photofission   from 4He  requires  that   

m3/2 "3/2  < 3   x  10-12  GeV.  (8.85) 
" y  '"  

Thus,  there  is a   bound on  the  reheating  temperature:   

T  <  1.5  x  1010  (GeV)2 
R  '"  --~~::::..:!­ (8.86)  

m3/2  

For example, for  m3/2   =  100 Ge  V,  T R  $  1.5  x  108  Ge V.  Subsequent calculations  
[9J  have  shown  that  the  bound  is  less  stringent  than  this  formula  suggests  for  
larger values  of  m3/2,   e.g.  for  m3/2  = I   TeV,  TR  $  2  x  109  GeV.  There  is  also  
the  danger of  excessive   gravitino  production  by  decay  of the   inflaton.  This  is  a  
very  model-dependent  matter  but  sufficient  suppression  can  occur  in  particular  

models [10].   
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8.6  The Polonyi   problem  

This  generic  problem  results  from  the  presence  in  a  theory  of  a  light  scalar  field  
which  has  only  gravitational  strength  interactions,  with  the  consequence  that  it  
is  decoupled  during  most  of  the  history  of  the  universe  and  eventually  releases  
energy  stored  in  its  expectation  value  at  a  very  late  time  [11].  This  release  
of  energy  increases  the  entropy  of  the  universe  at  a  low  temperature  thereby  
producing  a  negligible  baryon  abundance  and,  worse  still,  negligible  helium  and  
deuterium  abundances.  The  temperature  may  then  be  too  low  for  the  required  
abundances  to  be  recreated.  

A  simple  example  of this  problem.  from  which  it  derives  its  name,  occurs  in  
the  context  of the Polonyi model for supersymmetry breaking in supergravity.  We  
describe  first  this  mechanism  for  supersymmetry  breaking.  The  Polonyi  model  
is  an  example  of  a  model  in  which  supersymmetry breaking  occurs  in  a  'hidden  
sector', by which is meant a sector  of the theory which couples to the  'observable  
sector'  of quarks,  leptons,  gauge  fields,  Higgs  scalars,  and  their  supersymmetric  
partners only through gravitational interactions.  The hidden sector  of the Polonyi  
model  employs  a  single  gauge-singlet  scalar  field  j,  (not  the  inflaton)  and  its  
supersymmetric  fermionic  partner  with  superpotential  

W(j,)  =  jl2(j,  + /3).  (8.87)  

(We  are  using  the  same  notation  for  the  chiral  superfield  and  its  scalar  field  
component.)  Minimal  kinetic  terms  are  chosen  so  that  G  of (2.144)  has  the  form  

G =  j,*j,  + In  \W\2.  (8.88)  

In  (8.87),  jl  is a  real  parameter with dimensions  of mass  and  

/3=2--J3  (8.89)  

in  units  where  Mp  =  I.  The  parameter  /3  has  been  fixed  to  this  value  so  that  the  
effective  potential  of (2.147)  

V  =  jl4e~·~(ll +  j,*(j,  + /3)12  - 31j,  + /312)  (8.90)  

has  its  absolute  minimum  at  
j,=-J3-1  (8.91)  

with  V  = 0 and, so, the  desirable feature  of a vanishing cosmological constant in  
the  physical  vacuum.  At  this  minimum,  

a~ +  j,*W  =  -J3jl2  :f::  O.  (8.92)  
a~ 

Consequently,  supersymmetry  is  broken.  as  discussed  after  (2.152).  
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If  the  field  ~ starts  (because  of  quantum  fluctuations)  at  some  value  
of  ~ which  differs  from  the  minimum,  then  the  energy  density  stored  in  
the  expectation  value  of  ~ is  of  order  il4.  The  size  of  il  is  related  to  
the  size  of  supersymmetry  breaking  effects.  In  supergravity  theories  with  
supersymmetry breaking  in  a  hidden  sector,  the  size  of supersymmetry  breaking  
effects  transmitted  gravitationally  to  the  observable  sector  is  on  the  scale  of  the  
gravitino  mass  m3/2  and.  for  supersymmetry  to  solve  the  hierarchy  problem,  m3/2  
should  be  about  100  GeV  to  10  TeV.  In  the  Polonyi  model.  the  gravitino mass  is  

il2  ".  2 
m3/2  =  _e(,.13-1)  /2.  (8.93) 

Mp  

Thus,  for  m3/2  in  the  range  100  GeV  to  10  TeV,  we  have  

1010  GeV  ~ il  ~ 1011  GeV.  (8.94)  

(For a discussion  of the gravitino mass  in  supergravity theories with  hidden-sector  
supersymmetry breaking  see,  for  example,  [12].)  

For  the  discussion  of  the  entropy  increase  of  the  universe  when  the  Polonyi  
field  vacuum  energy  decays,  we  shall  need  to  know  the  expectation  value  of  
the  Polonyi  field.  In  the  context  of  cosmological  inflation,  we  should  determine  
this  expectation  value  by  minimizing  the  total  effective  potential  of  the  Polonyi  
field  and  the  inflaton.  (There  may  also  be  effects  of  quantum  fluctuations.)  The  
superpotential  of  the  Polonyi  field  ~ is  as  in  (8.87)  and.  for  definiteness,  we  may  
take  the  superpotential  for  the  inflaton  field  tP  to  be  

W(tP)  =  J,lh.2(tP  - a)2  (8.95)  

as  in  (8.9).  Thus,  the  total  superpotential  is  

Wtot(q,,~) =  W(~) +  W(tP).  (8.96)  

We  also  assume  minimal  kinetic  terms  so  that  

G  = ~*~ +  tP*tP  +  In  IWtotl 2•  (8.97)  

Then  the  effective  potential  can  be  calculated  from  (2.141)  in  units  where  the  
reduced  Planck  mass  Mp  =  I.  Taking  ~ to  be  real,  working  to  quadratic  order  in  
~ (when  ~ «  1  in  the  same  units),  and  remembering  that  tP  ~ 0  during  slow  roll,  
the  minimum  of  the  effective  potential  may  be  estimated  to  be  (exercise  5)  

- 2JL2ilJ..2lT2  
(8.98) 

q,  ~ JL4J..~ - 4f3J.1.2ili:2d-·  

The  values  of the  parameters  of the  Polonyi  model  are  given  by  (8.89)  and  (8.94),  
and  the  parameters  of the  superstring  model  of inflation  that  we  are  employing  by  
(8.13)  and  (8.33).  Using  these  values,  ~ may  be  estimated  to  be  

~ ~ 3(10-3-10-4).  (8.99)  
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Table  8.1.  Event  sequence  when  the  inflaton  vacuum  energy  decays  before  the  Polonyi  

field  oscillates.  

Time  (t)  p.<t)  p~(t) Prad(t)  

r- I  _t-2 '1  <I  <ID'"  tP  ~p~(I/) 0  

r- I 
1=  tD  - tP  P.(tD)  ~ Pnd(tD)  

T  3/2M-l/2 
R-m.  p  

-I  
ID  <  t  <  I~"'" m~ 0  ~p.(lf) -r4 
 

- r-1  _T3 
t~ <  1<  tD  - ~ -r4  
 I  =;D  -ri1 p. (; D)  ~ radiation  

t  3/2M -I/2 
R  -m~ p  

We  shall  assume  in  what  follows  that,  in  reduced  Planck-scale  units,  

(p=!  (8.100)  

where!  is  not  many  orders  of  magnitude  less  than  unity.  Considering  the  effects  
of quantum  fluctuations  will  also  lead  to  this  conclusion.  

To  proceed  further,  we  need  to  specify  the  temperature  at  which  the  inflaton  
vacuum  energy  decays.  The  crucial  thing  is  whether  this  is  before  or  after  the  
Polonyi  field  starts  to  oscillate  [13,  14).  

8.6.1  Inflaton decays  before  Polonyi   field  oscillation  

Let  us  consider  first  the  case  when  the  inflaton  has  already  decayed  and  reheated  
the  universe  before  the  Polonyi  field  starts  to  oscillate.  Then,  the  sequence  of  
events  is  summarized  in  table  8.1.  Inflation  ends  at  t  =  t f  and,  at  that  time  in  the  
present  model,  the  Polonyi  field  vacuum  energy  density  is  

P~(tf) ~ !ml~2 (8.101)  

provided  that  (p  is  significantly  less  than  I  in  reduced  Planck-scale  units.  Also,  
the  inflaton  vacuum  energy  density  is  

p.(t f)  ~ ,.,h.~ (8.102)  

from  (8.17),  because  ~ does  not  roU  much  during  inflation.  The  value  of  the  
Polonyi  mass-squared  is  detennined  by  

2  a2Veff  fJ2-2  
m- = -- =  IL  (8.103) 

tP  arp2  
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where,  from  (S.93),  
- 1/2  
IJ.  '" m  3/2  (S.I04) 

in  the  present units   and  f3  is  given  by  (S.S9).  
For t~  <  t  <  iD,  where  the  Polonyi  field  starts  to  oscillate  at t   = t~  when  

the  temperature  is  T~, and its   vacuum energy  density   decays  at iD,   

p~(t) _  p~(t~) T~ P~(tf) T~ 
(S.105) 

Prad(t)  - Prad(t~) T  = Prad(t~)  T  

is  the  ratio  of the   Polonyi  field  vacuum  energy  density  to  the  radiation  energy  
density  Prad.  Since  

Prad (t  -)  '" T~  (S.]06) t;  t;  

with  the  approximation (S.I 0 I), we  have  

p~(t) m!~2 
(S.]07) 

Prad(t)  '"  2T~T· 
tP  

Further progress  requires  a   calculation of  T~.  
Between  I  =  ID,  the  time  at  which  the  inflaton  vacuum  energy  density  

decays,  when  the  temperature  is  TD,  and  t  =  I~. the  universe  is  radiation  
dominated.  Thus, in   reduced Planck-scale   units,  

(T t)2  =   (R)2 R   = 3I   = 3] Prad (  
Prad

T )4 (S.lOS) (T)  (TD)  TD  

where  we  have  used  the  fact  that  RT is   constant  whenever the   number of  particle  
species  is  constant,  for conservation  of  entropy.   This equation   has  the  solution  

t  =  Prad(TD)  (S.]09) 
6T4 T2  .  

D  

At  t  =  t~, Prad(TD)  is  one  or two   orders  of magnitude   larger  than  T~, using  

(2.22)  with  NB  + t  N F  = ~ for  the  supersymroetric standard   model  or  ~ for  

the  standard  model  respectively.  Also,  since t~  '" m  ~ I. we   have  

1/2  
T~ '" m~  • (S.] 10)    

Returning to   (S.107),  for t~  <  t  <  iD,  

p~(t) m l__ "- t; J2;p  (8.] 11)   
Prad(t)  -T~ 
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If the  Polonyi  field  were  not  to  decay,  then  at  T  = 2.7  K  ::::  1O-3I Mp,  we  
would  have  

p~(t) _  loJlmy2~2. (S.112) 
Prad(t)  ;  

If we   want  to  avoid  p~(t)/Prad(t) >  I,  so  that  the  (p  energy  density  does  not  
dominate  the  energy density   of the   universe  and  produce  too  large  an  expansion  
rate,  we  need  

(p  .$  (10- 15  _  1O-16)m:1/4.  (Sol  13)  

With  m~ given  by (S.103)   and (S.93)   and  for  '"  
m3/2  = 10-15_10- 16  (S.1l4)  

in  reduced Planck-scale  units,   we  then require   

(p  .$  10-13_10-14.  (S.lI5)  

Comparing  this  with  (8.100),  this  is  an  unnaturally  small  value  by  many  orders  
of magnitude.   Making  (8.106)  more  precise  only  increases  this  by  an  order of   
magnitude.  

In  practice,  the  Polonyi  vacuum  energy  decays  but  the previous   discussion  
suggests that  there  may   be a  problem  with  entropy  production  when   it  does decay.   
The decay  occurs  at  temperature   iD  with  

t  ......  iD  - r:-I  (8.116)  

'"  
with  

r:-I  - m~ (8.117)  

and  then, from   (8.111),  '"  '" 

-"'---_.-
- 1/2-2 

P-(tD)  m- ~
(8.11S) 

Prad(iD)  iD'  
We  now  require  an  estimate  of  the  Polonyi  field  decay  temperature  iD.  
Remembering  that,  between  t  = t~  and  t  =  iD,  the  vacuum  energy  density  

for  (p  behaves  like  a  gas  of free   non-relativistic  particles  behaving  as  in  (7.64),  
p~(t) is growing  relative  to  Prad(t).   Consequently, we   may  expect p~  to dominate   

the  energy  density  of the   universe  by  t  =  iD.  We  therefore  approximate  the  
time dependence  of  the  temperature by  a   universe dominated  by   the  Polonyi field   
energy  density  p~. (Recall  that  the  inflaton  vacuum  energy  density  has  already  
decayed and   been converted  to  radiation.)   Then we   have  to  solve  

(t)2  (R)2  1  (  T)3 T  =  R  = 3P~(t~)  T~ (8.119) 
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with  the  result that   

t  - (p-;tr 12  r-'12.  (8.120) 

At I   =  iD,  and  with  iD  given  by  (8.116), we   get  

T- 2  -1/3  )  T 
D  - m ~p~ (t~. ~ (8.121)  

Using (8.111),  and  with   p~(t~) =  P~(lf) given by  (8.101),  we   have  

i  _  11/6;;-2/3 
D  m~ Y'  •  (8.122)  

Substituting this   into  (8.118) gives   

P~(iD) -4/3 -S/3  -.!:.-_--m- t/J  •  (8.123) 
Prad(tD)  ~ 

Consequently, the (p   vacuum energy density dominates the density of  the universe  
at the   moment of  decay provided   

- 1/2 
t/J  >  m~ .  (8.124)  

With  m~ given  by (8.103),  this   condition is   

(p>  10-8  (8.125)  

in  reduced  Planck-scale  units.  With  the  estimate (8.1  (0)  of  (p,  (8.125) is   satisfied  
with ease.   

Provided  that  P~ does  dominate  the  energy  density  of the   universe  at  the  
moment of  decay,   there  is  a  further  reheating  of the   universe  (in  addition  to  the  
reheating that  occurred  when   the  inflaton  decayed) to  a   temperature  

iR  _m~/2 (8.126) q,  

where  r ~  is  given by   (8.117).  For successful   nucleosynthesis,  we  must have   

iR>  I  MeV  = 1O- 2I Mp.  (8.127)  

This requires   
m~ >  10- 14  (8.128)  

in  reduced  Planck-scale  units.  The  value of  m~ used  here  (- 10-8)  satisfies  this  
bound  with  ease.  There is   then  an  entropy increase  of   

6.  =  (~R)3  '"  m -: I  ~2 _  108 ~2 .  (8.129) 
TD  ~ 
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Table  8.2.  Event  sequence  when  oscillations  of the  Polonyi  field  begin  before  the  inflaton  
vacuum  energy  density  has  decayed.  

Time  (t)  p.(t)  p~(t) 	 Prad(t)  

t/<t<t~"'m~1 
,~ <  t  <  tD  - r;1  

_,-2 
_,-2  ::::::p.<t/) 	 _,-2 

0 

0 
 
r- I 
t  =to  '"  • 	 ....  Prad(to)  

tD  <  t  <  to  - rit  0  _13  

1  3/2M-I/2 
R-m.  p  

_r4 
t  =io  - r:-I  P~(iD) ....  radiation  

~ 
TR  - m~2M;1/2 

Whenever  ;p  is  not  very  much  greater  than  I  in  reduced  Planck-scale  units,  this  
is  large  and  may  dilute  the  baryon  number  density  of  the  universe  unacceptably.  
In  that  case,  a  reheat  temperature  T R  large  enough  to  recreate  the  required  baryon  
number  density  is  needed.  For  low-temperature  baryogenesis,  

TR  ~ lOO  GeV  ~ 1O-16 Mp 	 (8.130)  

is  required  and,  using  (8.126),  this  imposes  the  bound  

m - >  10-1°_10-11 	 (8.131) .'"  .  
In  the  model  being  studied  here,  m~ '"  10-8  using  (8.103),  (8.104)  and  (8.89)  and  
so  it  should  be  possible  to  regenerate  the  baryon  number  by  a  low-temperature  
mechanism.  However,  for  other  types  of  light  fields  with  only  gravitational  
strength  interactions,  their  masses  may  be  too  small  for  the  entropy  generation  
problem  to  be  solved  in  this  way  (and  the  entropy  generation  may  also  be larger).  

8.6.2  Inflaton decays  after  Polonyi  field   oscillation  

We  consider  next  the  alternative  possibility  [13,  14J  that  the  inflaton  vacuum  
density  does  not  decay  until  after  the  Polonyi  field  has  already  started  to  oscillate.  
This  might  result  in  too  low  a  reheating  temperature  to  regenerate  the  baryon  
number of the  universe except with a low-temperature baryogenesis mechanism.  
The sequence  of events is summarized in table 8.2.  Between the end  of inflation  
at  t  = t /  and  the  start  of Polonyi  field  oscillations  at  t  = '.'  the  inflaton  vacuum  

energy  density  p~(t) decreases  as  ,-2  and  the  Polonyi  field  vacuum  energy  density  
p~ is  essentially  constant.  Between  t  =  t~ and  t  =  to,  the  time  at  which  the  

inflaton  vacuum  energy  density  decays,  both  t  =  p.  and  t  =  p~ decrease  as  ,-2.  
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At  t  =  t~, the  inflaton  vacuum  energy  has  not  yet  decayed  and  this  vacuum  energy  
density  IS  an  effective  matter  density  controlling  the  expansion  of the  universe,  as  
discussed  after  (7.63).  At  this  time,  we  expect  

H  '"  t:- I  (8.132)  
~ 

or one or two orders  of magnitude greater, and  we  also  have  

PIP  =  3H2  (8.133)  

in  reduced  Planck-scale  unit,  from  (7.41).  Thus,  at  t  =  t~, 

PIP  '"  3m~. (8.134)  

Also,  at  t  = t.,  
P_  '"  Im2.J;2 (8.135) IP-l.'"  

where  we  can  approximate  ij)  by  its  value  at  t  =  t f  because,  to  a  good  
approximation,  ij)  does  not  start  to  oscillate  until  t  =  t~ .  Consequently,  because  
PI/J  and  P~ have  the  same  time  dependence  between  I  =  I~ and  I  =  ID,  

p~(to) p~(t~) I  -2 
--=-"'-" .  (8.136) 
PIP  (to)  PI/J(t.)  6  

At  t  =  to.  the  inftaton  vacuum  energy  density  decays  and  so  immediately  
afterwards  

p.(to)  I  -2  
(8.137) 

Prad(tD)  '"  "6"  .  
For  t  <  tD  but  greater  than  iD.  the  time  at  which  the  Polonyi  field  energy  decays,  
P~ decreases  as  T3.  whereas  the  radiation  density  decreases  as  T4.  Thus,  for  

iD  <  t  <  to,  
p~(t) p~(t~)TR ij)2TR  

(8.138) 
Prad(t)  =  Prad(t~)T '"  ~ 

where  TR  is  the  temperature  to  which  the  universe  reheats  when  the  inftaton  
vacuum  energy  decays.  

First,  consider  what  would  happen  if  the  Polonyi  field  ij)  were  not  to  decay.  
For  nucleosynthesis  to  be  able  to  recreate  the  4He  and  deuterium  densities  diluted  
by  the  increase  in  entropy  due  to  inftaton  decay,  we  must  have  TR  larger  than  
I  MeV::::  IO-21 Mp.  Since  

TR  ....  m3/ 2M-1/ 2  (8.139) ~ p  

as  a  consequence  of (7.72)  with  r ~ '"  m~Mp2, it  follows  that  

m~ ~ IO-14Mp  (8.140)  
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at  T  =  2.7  K  '"  10-31  Mp,  and  then,  from  (8.13S),  that  

p~(lo) >  (';2  10  
-- -xlO.  (8.141) 
Prad(tO)""  6  

To  avoid  p~ dominating  the  energy  density  of  the  universe  and  producing  an  
excessive  expansion  rate,  we  need  

(';  ~ 10-5  (8.142)  

in  reduced  Planck-scale  units.  Thus,  there  will  be  a  problem  if (';  is  not  very  small  
on  the  reduced  Planck  scale.  

This  suggests  that  there  might  be  a  problem  with  entropy  generation  in  the  
realistic  case  where  (';  decays  before  2.7  K  is  reached.  We  must  decide  first  
whether  or  not  the  Polonyi  vacuum  energy  density  will  dominate  the  energy  
density  of  the  universe  at  the  moment  of  decay.  At  I  =  iD,  when  the  Polonyi  
field  vacuum  energy  decays,  from  (8.13S)  

P~(iD) (';2TR  
(S.143) 

Pnd(iD )  =  6iD  

Thus,  we  must  next  estimate  the  temperature  iD  at  which  this  decay  occurs.  The  
Polonyi  field  energy  density  p~ grows  relative  to  the  radiation  energy  density  as  
the  temperature  drops  for  ID  <  t  <  iD.  We  therefore  approximate  the  time  
dependence  of  the  temperature  by  taking  the  energy  density  to  be  dominated  by  
p~. Then,  

(t)2  (R)2  T )3 I  1 (  (8.144) T  =  R  =  3P~(t) =  3P~(ID) Tj,  

with  solution  
4T3  )1/3  

T  =  (  ~ 1-2/3•  (8.145) 
3p~(tD) 

Using  (8.116),  (8.139)  and  (8.101),  we  see  that  

( t_)2  1 m6  
p~(ID) =  .1..  p~(I~) '"  -4P~(tf) '"  2'm:(';2  (8.146)  

ID  m~ 

where  we  have  also  used  t.  '"  m~l and  ID  '"  r;l  '"  m;3.  Now,  from  (8.145)  
and  (8.146),  

iD'"  m  -1/2m~;;-2/3 (8.147) ~ ~." .  
Returning  to  (8.1  IS),  

p.(iD)  '"  ~ -S/3  2  -2  '"  ~ -S/3T~J3 -2  (S.148) Pnd(iD)  44'  m;m~ 44'  R  m~ .  



The  Polonyj  problem  247  

The Polonyi   vacuum  energy density  dominates  the   energy density  of  the  universe  
when this  is   greater than   one.  The  condition for   this  is  that  

~ > m- 3/ 4m3/4  _  T-1/2  3/4  (8.149) ""  ~ ~ R  m~. 

Assuming  that  baryon  number  regeneration  has  to  occur  at  reheating  after  the  
inflaton  vacuum  energy has  decayed  to   radiation.  we  require  

TR  ~ lOO  GeV  (8.150)  

or.  from  (8.139).  
m >IO- II M  -107 GeV  (8.151)  I/J  ""  P­

for electroweak  baryogenesis.   Also.  to regenerate  the  4He   and deuterium  densities   
after destruction  of these nuclei  by  the  decay products of  the Polonyi field  ~. we  
require  

m~ ~ IOTeV  ~ 1O-14 Mp  (8.152)  

much as  in   (8.140)  for the  dilaton.   
If.  for example.   we  take  ml/J  =  10  GeV and   m~ =  10  TeV.  then  for  ~ '"  I  in  

Planek-scale  units.  from  (8.143).  

P~(tD) 1  6  
----!...-_=__  - - x  10  (8.153) 
Prad(tD)  4  

so that  the   ~ vacuum energy density dominates the energy density of  the  universe.  
The  increase  in  entropy  of the   universe  in  reheating  after  the  ~ vacuum  energy  
density  decays  is  

A  (TR)3 
 ;'2  3/2  -3/2 
u  '"  -::- '" ."   m.  m- (8.154) 

TD  I/J  

- 3/2 where  we  have  used  (8.147) and   TR  '" m  ~ .  For the   same choices  of  ml/J  and  m~. 

and  ~ '"  I. (8.154)  gives   
l1  '" 105   (8.155)  

which.  though quite  large.  may   not  be  inconsistent with  a  sufficiently  large   baryon  
number density   surviving.  

If.  however.  we  take  m~ '"  m~~~. as  in  the  model  being  employed  here.  

then  with  ~ '"  I.  P~(iD) ~ Prad(tD)  when  TR  ~ 106  GeV.  corresponding  

to  m~ ~ 10-8 Mp.  and  the  Polonyi  vacuum  energy  density  then  dominates  the  
energy  density  of the   universe  at  the  moment  of decay.   (For lower   values  of TR   

the  Polonyi  vacuum  energy  density  does  not  dominate.)  In  that  case.  l1  is  only  
of order   I  for  m I/J  '" 10- 8 M p  and  no  dangerous entropy   generation  need  occur.  
Thus.  the  entropy  generation  problem  is  not  present  for  moderate  values  of the   
parameters  when  the  inflaton  vacuum  energy  decays  after  the Polonyi   field  has  
started  to  oscillate.  
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8.7  Exercises  

I.  Derive  the  effective  potential  of  (8.3)  from  (8.1)  using  the  superpotential  
(8.2).  

2.  Derive  the  effective  potential  (8.10)  for  the  superpotential  (8.9)  with  minimal  
kinetic  terms.  

3. 	 Derive  the  effective  potential  (8.50)  for  a  model  of  D-term  inflation.  
4.  Check  that  the  D-term  inflation  model  effective  potential  (8.50)  has  a  

minimum  at  4>+  =  4>- =  0  when  the  inequality  (8.51)  is  satisfied.  
5.  Estimate  the  minimum  of  the  effective  potential  for  the  Polonyi  field  in  the  

presence  of  the  inflaton  field.  

8.8  General references   

The  books  and  review  articles  that  we  have  found  most  useful  in  preparing  this  
chapter  are:  

• 	 Bailin  D  and  Love  A  1994  Super symmetric  Gauge  Field  Theory  and  String  
Theory  (Bristol:  lOP)  
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Chapter 9 

Superstring cosmology 

9.1 Introduction 

For energies small compared to the string scale (which is of the order of 
the Planck scale in weakly coupled heterotic string theories), heterotic string 
theory in ten dimensions reduces to four-dimensional supergravity theory once 
compactification of extra dimensions has taken place. Thus, the discussion 
in chapter 8 also applies to heterotic string theory with special choices of 
the superpotential and Kiihler potential derived from specific string theories. 
However, there are other aspects of string theory cosmology that go beyond 
supergravity cosmology. 

Superstring theories contain massless (in the first instance) fields, referred 
to as the 'dilaton' and, more generally. 'moduli', whose effective potential 
is flat. These are a field theory manifestation of degeneracies of the string 
vacuum. In particular, if the compactification of the theory from ten dimensions 
to four dimensions occurs on a six-dimensional torus, certain of these moduli, 
the 'T-moduli', correspond to the freedom (before non-perturbative effects are 
considered) to vary continuously the radii of the torus along the associated 
axes. Similarly, the (expectation value of the) dilaton S is associated with 
the freedom to redefine the strength of the gravitational coupling. The dilaton 
and moduli fields are expected to obtain masses on the electroweak scale 
when supersymmetry breaking occurs and a non-trivial effective potential is 
generated. The supersymmetric partners of the dilaton and moduli (the 'dilatino' 
and 'modulinos') have a cosmology similar to the gravitino and can produce 
unwelcome densities in the universe. The dilaton and moduli fields themselves 
have a cosmology similar to the Polonyi field discussed in section 8.6 and can 
produce excessive entropy by late decay. These problems will be discussed 
in section 9.2 together with a possible solution through the thermal inflation 
mechanism. 

Another problem associated with the existence of the dilaton in particular is 
the need for it to settle into a minimum of the effective potential. If this occurs 
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only  with  difficulty,  there  can  be  adverse  effects  on  inflation.  This  problem  will  
be  discussed  in  section  9.3.  On  a  slightly  more  positive  note,  the  dilaton  and  
moduli  fields  with  their  flat  potentials  before  supersyrrunetry  breaking  are  possible  
candidates  for  inftaton  fields  and  this  will  be  discussed  in  section  9.4.  

The  discussion  up  to  this  point  in  the  chapter  will  assume  that  
compactification  to  four  dimensions  has  already  taken  place.  However,  there  
could  be  an  era  in  the  history  of  the  universe  during  which  all  nine  spatial  
dimensions  are  still  of  comparable  size.  The  cosmology  of  this  era  and  how  
it  joins  on  to  the  era  with  just  three  large  spatial  dimensions  will  be  discussed  
in  section  9.5.  In  particular,  the  question  of  why  only  three  spatial  dimensions  
become  large  will  be  addressed.  

All  of  this  discussion  is  based  on  heterotic  string  theory.  There  are  
also  promising  candidate  theories  based  on  type  HA  or  type  lIB  string  theory,  
containing  extended  solutions  referred  to  as  'D-branes'.  The  cosmology  of  D­
branes  will  be  discussed  in  section  9.6.  

Finally,  in  section  9.7  and  section  9.8,  we  shall  discuss  two  models  for  the  
universe  which  allow  there  to  have  been  an  evolution  of the  universe  prior  to  the  
big  bang.  In  the  first  of  these  models  (pre-big-bang  cosmology),  the  effect  of  
the  (weakly-coupled)  heterotic-string  dilaton  on  the  cosmological  field  equations  
is  exploited  to  obtain  solutions  with  a  growing  positive  Hubble  parameter  for  
t  <  0  driving  inflation  before  the  big  bang.  In  the  second  model  (the  'ekpyrotic'  
universe),  strongly  coupled  string  theory  is  employed.  Novel  cosmology  emerges  
from  the  existence  of  an  11th  dimension  in  the  dual  M-theory  which  will  be  
discussed  in  section  9.8.  

9.2  Dilaton and  moduli  cosmology   

Before  discussing  the  cosmological  implications  of  the  existence  of  the  dilaton  
and  moduli  fields  and  their  supersyrrunetric  partners,  we  give  some  arguments  
that  allow  the  masses  of these  fields  to  be  estimated [I].  The supergravity effective  
potential  is  given  by  (2.147).  It  is  convenient  here  to  rewrite  this  in  terms  of  the  
F  -term  field  

Fi  =  eG/2(G-I)~GJ (9.1)  

and  its  adjoint  

F;  ==  (Fi ).  = eG/ 2(G- 1){Gj  (9.2)  

in  the  notation  of (2.148).  Then  

v  =  F;FJGj  - 3eG •  (9.3)  

The mass  of the dilaton (or modulus) field,  denoted by  f/>  for  the  moment,  is  found  
by differentiating the  relevant part  of (9.3), namely  

v  = F.~G: - 3eG  + ....  (9.4)  
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This  means  that  we  need  an  estimate  of  F.  at  the  absolute  minimum  of  the  
effective  potential  to  estimate  these  masses.  

First,  because  the  dilaton  and  moduli  fields  have  only gravitational   strength  
interactions,  for  any  superpositions  of the   fields  G~ ......  I  in  reduced  Planck­
scale  units  (Mp  =  t).  Because  V  =  0  at  the  absolute  minimum  (for  zero  
cosmological constant),   the  square  of the   F -field  responsible  for  supersymmetry  
breaking, assumed   to be   a  superposition of  the   dilaton  and  moduli  F -fields,   is  of 
order e G.  Moreover, the  gravitino   mass  is  given by   

2  _  Go 
m3/2  ­ e  (9.5)  

where  Go  is  the  value  of G   at  the  absolute  minimum.  Thus,  

2  2 
Fj  -m3/2  (9.6)  

for  the  supersymmetry-breaking  F -field   superposition.  If there  is more  than  one  
superposition of the dilaton and  moduli  F -fields  with  a  vacuum expectation  value   
(VEV),  we  shall  assume  that  (9.6)  holds  for  each  superposition  or  some  are  
negligible.  (With  the  usual  definition  of the   scale  of supersymmetry   breaking  
msusy,  (9.6)  is  the  statement  

2  4  
m3/2"""  mSUSY  (9.7) 

in  reduced  Planck-scale units.)   
Returning to   the  dilaton  and  moduli  masses,  

a2v  )  
m~ (  (9.8) 

=  at/Jat/J*  

provided  that  the  kinetic  terms  are  minimal  so  that  the  t/J-field  does  not  need  
rescaling.  With  V  given  by  (9.4)  and  F.  of the   order given   by  (9.6),  m~ is  a  

sum  of terms   of order  eGo   and  terms  of order   F. F.  both  of which   are  of order   
m~/2' Thus.  we  might expect  that   

m.  - m3/2  (9.9) 

where  t/J  denotes  a  dilaton  or  modulus  field.  Similar  but  somewhat  more  
complicated  arguments  can  be  made  for  the  dilatino  and  modulinos.  Detailed  
calculations confirm  these   expectations [I  J.  

The  cosmology  of dilatinos   and  modulinos.  which  are  light  fermions  with  
masses  of order m3/2  with   only  gravitational strength  interactions.   resembles that   
of gravitinos.  The dilatinos   S will  have a   decay  rate  

r  3M-2 S -m s  p  (9.10)  

where  m S is   the  dilatino  mass  and  a  decay time   

 

t- - r-1 (9.  t  t) ss'  
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To  avoid  4He  and  deuterium  abundances  being  modified  by  the  decay  products  
of  the  dilatinos,  we  should  insist  on  the  temperature  Ts  at  the  time  of  dilatino  
decay  being  larger  than  1  Me V  ::::  10-21  Mp.  If we  assume  a  radiation-dominated  
universe  during  the  period  before  the  dilatons  decay,  then  

.,.  t-1/2  3/2M - I  (9.12) 's"'"  S  ,.."  ms  p  

Thus,  we  require  that  
ms>  IO-14Mp::::  10  TeV.  (9.13)  

We  expect  the  gravitino  mass  m3/2,  which  controls  the  sizes  of  soft  
supersymmetry  breaking  masses  for  the  matter  fields,  to  be  not  greater  than  about  
10  Te V  to solve the hierarchy problem.  This bound can just be satisfied, especially  
given  that  m S  ,.."  m3/2  is  only  a  rough  estimate.  The  same  discussion  applies  to  

the  modulinos  t;.  
In  any  case,  the  cosmological  problems  that  arise  from  the  decays  of  light,  

very  weakly-interacting  fermionic  fields  can  be  avoided  if  there  is  a  period  of  
inflation,  additional  to  the  main  period  of  inflation,  to  dilute  this  fermionic  field  
density.  However,  the  reheat  temperature  after  this  period  of  inflation  should  not  
be  too  high  in order to  avoid  regeneration  of the  dilatino and  modulino densities.  
Thus,  as  discussed  in  section  85  for  gravitinos,  we  should  have  a  reheating  
temperature  

TR;S  109  GeV  (9.14)  

so  that  any  necessary  regeneration  of  the  baryon  number  density  should  occur  
through  low-temperature  baryogenesis.  

The  cosmology  of  the  dilaton  S  and  moduli  T;  fields  resembles  that  of  the  
Polonyi  scalar  field  discussed  in  section  8.6,  and  much  of  the  calculation  given  
there is unmodified.  We shall focus on the dilaton field  S but the discussion  of the  
moduli  fields  T;  will  be  exactly  similar.  Consider  first  the  case  where  the  dilaton  
field  has  started  to  oscillate  before  the  inflaton  decays.  With  a  dilaton  field  energy  
density  at the end  of inflation  

Ps(t f)  ::::  !m~S2 (9.1S)  

and  assuming  for  the  moment  that  the  dilaton  field  does  not  decay,  we  find,  as  in  
(8.11  S),  that  the  requirement  to  avoid  the  dilaton  field  energy  density  dominating  
the  energy  density  of the  universe  today  and  producing  too  large  an  expansion  rate  
is  

S::::  (I0-IS  - 1O-16)msl/4.  (9.16)  

For  
ms  ,.."  m3/2  ,.."  100  GeV-1O  TeV  '"  (I0-16_1O- 14)Mp  (9.17)  

we  get  
S  ::::  10-11_10- 12  (9.18)  
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in  reduced  Planck-scale  units,  which  is  much  smaller  than  the  value  expected  
to  be  obtained  when  the  effective  potential  for  the  dilaton  is  minimized  in  the  
presence of the inflaton field  or when  the VEV  of the dilaton is  shifted by quantum  
fluctuations  during  inflation.  This  value  would  instead  be  expected  to  be  not  many  
orders  of  magnitude  less  than  unity,  much  as  for  the  Polonyi  field.  (See  (8.99).)  
Consequently,  the  dilaton  field  energy  density  would  dominate  the  energy  density  
of  the  universe  today.  

In  practice,  S  would  be  expected  to  decay  but  the  previous  discussion  
suggests  the  possibility  of  excessive  entropy  production  when  the  decay  occurs.  
The  reheat  temperature  TSR  when  the  dilaton  field  energy  density  decays  is  

TSR  '"  m3
S / 

2  (9.19)  

as  a  consequence  of  (7.72)  with  rs  '"  m~. For  successful  nucleosynthesis  to  
occur  after  reheating,  we  must  have  TSR  ~ 1  MeV,  which  implies  that  

ms  ~ 1O- 14Mp  =  10  TeV.  (9.20)  

There is   then an   entropy increase   

/);.  = (TSR)3   (9.21)  
TSD  

where  TSD  is  the  temperature  at  which  the  dilaton  decay  occurs.  In  analogy  with  
(8.122),  

TSD  '" m ll /6S-2/3 S  •  (9.22)  

Thus,  

/);.  '"  S2  (9.23)  
ms  

For ms   '" 10   TeV,  
/);.  '"  1014S2  (9.24)  

in  reduced  Planck-scale  units.  When  S  is  not  much  smaller than   I  in  these  units,  
this  is  very  large  and  may  dilute  the  baryon  number  density  of  the  universe  
unacceptably.  Then  the  reheat  temperature  TSR  needs  to  be  high  enough  for  
regeneration of the baryon number density to be possible.  This imposes the bound  

mS  ~ 10-1°_10-11  (9.25)  

as  in  (8.131). Thus,   
ms  ~ 107_108  GeV  (9.26)  

is  required.  This  is  not consistent   with  a  dilaton  mass  of order  m3/2.   An  exactly  
similar discussion   applies for  the  moduli.   

As  in  the case  of  the  Polonyi  field,  the  problem is   less  severe  in  the  case that   
the  inflaton  vacuum energy  density   does  not decay  until   after the   dilaton  field  has  
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already  started  to  oscillate.  If the  dilaton  field  were  not  to  decay  then,  following  
the  discussion  leading  to  (8.141),  to  avoid  PS  dominating  the  energy  density  of  
the  universe  and  producing  an  excessive  expansion  rate,  we  need  S  ;S  I O-s.  This  
is  not  consistent  with  our  expectation  that  S  will  not  be  very  much  less  than  unity  
in  reduced  Planck-scale  units.  Thus,  Ps  will  dominate  the  energy  density  of  the  
universe.  This  suggests  that  there  might  be  a  problem  with  entropy  generation  in  
the  realistic  case  where  S  decays  before  T  = 2.7  K  is  reached.  Then,  following  
the  logic  leading  to  (8.154),  the  increase  in  the  entropy  of  the  universe  in  the  
reheating  after  the  S  vacuum  energy  density  decays  is  

..  -3/2  3/2S2 
u  -ms  (9.27) m.  .  

As  discussed  in  section  8.6,  electroweak  baryogenesis  can  occur  at  the  reheating  
after  the  inflaton  vacuum  energy  density  decays  when 

m.  ~ IO-II Mp  ~ 107  GeV  (9.28)  

and  regeneration  of the 4He and deuterium densities can  occur following  reheating  
after  the  dilaton  vacuum  energy  density  decays  if  

ms  ~ 10  TeV  ~ 10-14 Mp.  (9.29)  

If,  for  example,  we  take  m.  =  107  GeV  and  ms  =  10  TeV,  then  even  for  S  - I,  
we  get  

11  .....  Io!!  (9.30)  

which  may  not  be  so  large  as  to  be  inconsistent  with  sufficient  baryon  number  
density  surviving.  A  similar  discussion  applies  in  the  case  of  moduli  fields.  

As  will  be  discussed  next,  even  if  too  much  entropy  generation  occurs  when  
the  dilaton  or  modulus  vacuum  energy  density  decays,  it  may  be  possible  to  
regenerate  the  baryon  number  density  (and  4He  and  deuterium  densities)  in  an  
extra  stage  of  inflation  referred  to  as  'thermal'  inflation  [2J.  Such  a  period  of  
inflation  is  produced  by  a  scalar  field  a  with  mass  ma  of order  100  GeV-I  Te V,  an  
approximately  flat  potential,  and  a  VEV  (a)  which  is  large  on  the  100  Ge V-I  Te V  
scale.  If this  vacuum  expectation  value  is  too  large,  then  such  a  field  will  produce  
a Polonyi problem  of its own and so  we  require an expectation value which is large  
on  the  previous  scale,  but  not  too  close  to  the  Planck  scale.  So-called  'thermal'  
inflation  takes  place  while  the  field  a  is  trapped  in  the  metastable  minimum  at  the  
origin  by  thermal  effects.  For  this  trapping  to  be  possible,  the  temperature  should  
satisfy  T  ~ ma.  Otherwise  the  field  would  sit  at  the  zero-temperature  minimum  
away  from  the  origin.  For  inflation  to  occur,  the  vacuum  energy  density  should  
dominate  over  the  radiation  energy  density  and  so  we  should  have  

Vo  ~ T4  (9.31)  

where  Vo  is  the  vacuum  energy  density  of  a  in  the  minimum  at  the  origin.  It  is  
then  possible  for  inflation  to  occur  when  

1/4 
ma  ;S  T  ;S  Vo  .  (9.32)  
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Because  RT  is  constant  during  inflation,  the  number  Ne  of e-folds  In(R j  /  Ri)  is  
just  In(T;/Tj).  Thus.  

(9.33) N.=ln(~) 

With  ma  ""  100  GeV-1  TeV,  the  period  of  thermal  inflation  begins  before  the  
baryogenesis  and  nucleosynthesis  that  follow  the  earlier  period  of  inflation.  The  
thermal  inflation  may  then  sufficiently  dilute  the  dilaton  or  modulus  density  to  
resolve  problems  with  dilution  of  baryon  number  or  4He  or  deuterium  density  
caused  by  entropy  generation  when  decay  of  the  dilaton  (or  modulus)  occurs.  
(Recall  that  the  dilaton  or  modulus  vacuum  energy  density  is  behaving  like  a  gas  
of non-relativistic  particles,  as  discussed  before  (7.64)  in  the  case  of the  inflaton.)  

9.3  Stabilization of  the  dilaton  

As  observed  in  section  9.1,  the  dilaton  field  has  a  flat  effective  potential  before  
supersymmetry  breaking.  Let  us  assume  that  spontaneous  symmetry  breaking  is  
due to non-perturbative 'gauginocondensation' in  which a product of two gaugino  
fields  develops a   VEV.  The effective   potential of  the   dilaton  including this   effect  
may  be  calculated.  It is   then  found  that  it  is  difficult  for  the  dilaton  to  settle  to a   
minimum of the effective potential.  Before discussing this problem, it is necessary  
to  review  the  form  of the  non-perturbative  potential   to  be  expected from   gaugino  
condensation.  

The  six  unobserved  spatial  dimensions  are  usually  compactified  on  an  
'orbifold' or  a  Calabi- Yau  3-fold which  generally  has  three  T-moduli  determining   
the  size  of the   compactified  space  in  the  three  complex  dimensions  (as  well  as  
complex-structure moduli  specifying  its   shape).  For simplicity.   assume that  there   
is  a  single overall   T-modulus  field  T  (not to   be confused  with  temperature).Thus,   
we  take  

T  =  Tl  = T2   = T3.   (9.34)  

If the various  factors   in  the  hidden-sector gauge group  are   labelled by  the  index  a,   
the  non-perturbative gaugino  condensate  superpotential   Wnp  is  of the   form  (see,  
for example,  [3]   and  references therein)   

Wnp =  EW:p  (9.35)  
a  

with  
W:p  =  dae247r2Slbal1(T)-6.  (9.36)  

In  (9.36),  l1(T)  is  the  Dedekind  eta  function,  ha  is  the  renormalization  group  
coefficient  for  the  ath  factor  of  the  hidden-sector  gauge  group  including  a  
contribution due  to  hidden-sector  matter, d a  is a  numerical  cofficient  and  so-called   
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'Green-Schwarz terms'   have  been  omitted.  The  Kiihler  potential  for  the  dilaton  
and moduli   fields  is  

K  = In(S +  S)  - 31n(T  + T).  (9.37)  

Then. the  effective  potential   V  derived from  (2.132)  is   given  by  

- -3  (S   V   2 + S)(T +  T) _awnpl2 =  1  Wop  - (S  + S)as- - 31Wopl  

- awI T)-;;:r 1 
2  

+ Wnp  - np  
3  (T +  (9.38)  

The non-perturbative  superpotential  should  be  chosen   such that   

Re  S  '" 2   (9.39)  

at the global minimum of  the potential. because of  the connection between Re  S  
and  the value  gSlring   of the gauge  coupling  constant  at   the  string scale   

-2 Re  S  =  2gSlring'  (9.40)  

In  particular.  if the   ath  factor  in  the  hidden-sector gauge   group  is  SU(Na)  and  
there  are  hidden-sector  matter  fields  in  Ma  copies  of  N a  + N  a  fundamental  
representations. then   

ba  =  -Na +  }Ma   (9.41)  

and  

da  = (~Ma  _  Na) (321r2e)3(M..-N,,)/(3N,,-M,,)   (~a )  M,,/(3N,,-M,,)  (9.42)  

It  is  not  possible  to  satisfy  (9.39)  with  a  single  condensate  but  with  two  
condensates minimization  of  the  effective potential  gives   

Re  S  ~ 0.17  N2Ml  - NIM2  (9.43) 
3N2  - Ml  - 3Nl  + Ml   

which  allows  (9.39)  to  be  satisfied  for  many  choices of  the   integer  parameters.  
together  with  yielding  a  realistic  value  of the   gravitino  mass  m3/2  given  by  the  
value  of eG/ 2  at  the  minimum.  as  in  section 9.5.   There  is  also scope   to  tune  the  
parameters to   obtain  V  =  0  at this   minimum and   so zero  cosmological  constant.   

The dilaton   stabilization  problem  [4]  is a   result of  the peculiar  shape  of  the  
potential  V  illustrated  schematically  in  figure  9.1.  If Re   S  starts  larger  than  2.  
there  is  only  a  very  small  region  of Re   S  which  allows  it  to  roll  to  the  desired  
minimum  at  Re S   =  2.  If Re   S  starts  smaller  than  2.  the  very  steep  potential  
causes  it  to  roll  over  the  very  low  barrier.  failing  to  be  trapped  at  Re S   =  2  
unless  it  starts  very  close  to  Re  S  =  2.  Thus.  trapping the   dilaton  in  the  desired  
minimum requires fine  tuning of  the initial conditions. (Strictly. we should correct  
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v 
 

2  ReS  

Figure  9.1.  Representative  two-condensate  effective  potential  for  ReS.  The  depths  of  the  

minima  and  height  of  the  maximum  are  very  small.  

the  discussion  to  allow  for  Re  S  having  non-minimal  kinetic  terms.  This  makes  
little  difference.)  

However,  the  situation  is  drastically  altered  by  several  effects  [5,6]  not  
included  in  the  original  treatment.  First,  the  thermal  energy  density  modifies  
the  Hubble  parameter  and  if  the  thermal  energy  density  is  large  compared  to  the  
dilaton  energy  density,  this  can  create  sufficient  'friction'  to  allow  the  dilaton  to  
roll  into  the  Re  S  =  2  minimum  of  V  for  a  considerable  range  of  initial  values  
of  Re  S.  Second,  the  dilaton  couples  to  the  energy  density  of  matter  and  gauge  
fields  and,  third,  Re  S  couples  to  the  axion  field,  which  is  the  imaginary  part  of  S.  
We  shall  focus  here  on  the  first  of these  effects.  

For  a  homogeneous  real  scalar  field  tf>  with  minimal  kinetic  terms  and  
effective  potential  V  (if»,  as  in  (7.33),  

;p  +  3Htb  +  V'(tf»  =  O.  (9.44)  

We  now  want  to  allow  for  contributions  to  the  Hubble  parameter  from  the  thermal  
energy  density  of  matter  fields  or  radiation.  We  shaH  take  the  field  if>  to  have  a  
potential  of the  form  

V(tf»  =  Voe-l.1/>  (9.45)  

in  reduced  Planck-scale  units  and  shall  discuss  later  how  this  relates  to  the  dilaton  
field.  The  pressure  Pf3  and  energy  density  pf3  of  the  matter  fields  or  radiation  
satisfy  an  equation  of  state  

Pf3  =  (E  - l)pf3  (9.46)  

where  E  =  I  for  a  matter-dominated  universe  and  E  =  4/3  for  a  radiation­
dominated  universe  during  the  rolling  of  if>  towards  the  minimum  of  its  potential.  
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Then  
H2  = i(V   + !<i>2   + p£)   (9.47)  

is  the  generalization  of  (7.40)  and  (7.41).  in  reduced  Planck-scale  units.  Using  
(9.47) and   (9.44),  

.  1  '2  I 
H=--tP  +-Pt!  (9.48) 

2  6H'  

Also,  from  the  energy-momentum conservation  equation  (1.45),   

P£  =  -3H(pt! +  p£)  (9.49)  

so  that  
H •   1'2  ) =  -'1(tP  + Pt!  + Pf   •  (9.50)  

This ignores  any  interaction  other  than  gravitational  of  tP  with matter  fields.   These  
equations can   be  solved  analytically  for  the  asymptotic  form  of tP   in  the  case  of  
very  steep potentials   

).2>  3E.  (9.51 )   

The  field  l/J  increases  at  first  but  the  'friction'  corresponding  to  the  Hubble  
constant then  freezes   l/J  at  a  near-constant value  i>o   for  a  time,  where  

- ../6  In  (I+XO) 
= -- (9.52) t/Io  t/Io  + 3(2  - E)  I - Xo  

and  
<i>o  (9.53) 

Xo  ==  ../6Ho  

with t/Io,   <i>o  and  Ho  denoting initial   values.  Finally,  l/J  approaches  the  asymptotic  
form  

I  (  2).2Vo  )  + 3E l/J(t)  =  - In  2  - In  R(t)  (9.54) 
).  9Ho (2 - f)f  ).  

where  R(t)  is  the  scale  factor  ('radius')  of  the  universe.  The  approach  to  
the  minimum  is  then  slow  and,  after  oscillations  about  the  minimum  with  an  
exponentially damped  amplitude,  l/J   settles  to  its  minimum.  

Let us   now apply  these   considerations to  Re   S,  taken  for the   moment to   have  
minimal  kinetic  terms.  In  the  region  Re  S  <  2  but  not  too  close  to  Re  S  =  2  
where  the  minimum  has  been  produced  by the   balancing  of two   terms,  the  non­
perturbative  superpotential  may  be  approximated  by  a  single  term  W~ with  S­
dependence:  W:p  ,....,  e-A..S  (9.55)  

where  
24:n- 2  

(9.56) 
Il.a  =  Na  -}Ma  
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is  positive  and  has  the  smaller  value.  Then,  the  parameter  J..  in  (9.45)  is  given  by  

J..  = 2.!1 a•  (9.57)  

A  more  careful  treatment  [5)  with  the  correct  non-minimal  kinetic  terms  for  Re  S  
makes  very  little  difference  to  (9.54),  with  41  replaced  by  Re  S.  

This  discussion  is  valid  provided  that  Re  S  is  able  to  attain  the  asymptotic  
form  of  solution  before  passing  through  the  minimum.  Sufficient  conditions  [5)  
are  to  take  the  initial  value  of  Re  S,  denoted  by  Re  So.  between  the  constant  term  
in  (9.54)  and  the value  at  the  minimum  Re  Smin  '"  2.  and  also  an  initial  velocity  
for Re  S such that the constant value Re  So,  in the sense  of (9.52), is also less than  
Re  Smin.  (In  practice,  the  minimum  we  are  trying  to  reach  is  at  a  smaller  value  of  
Re  S  than  the  adjacent  maximum,  and  so  we  must  start  with  Re  S  <  Re  So  to  have  
any  chance  of ending  up  in  the  minimum.)  Thus,  we  require  

~ In  (  2J..2Vo  )  (9.58) J..  9HJ(2  _  E)E  <  Re  So  <  Re  Smio  

and  an  appropriate  initial  velocity  for  Re  S.  

9.4  Dilaton  or moduli   as  possible  inflatons  

A  priori,  the  dilaton  or  moduli  fields  (for  an  orbifold  or  Calabi-Yau  
compactification)  are  good  candidates  for  inflaton  fields  [7)  because  their  
potential  is  completely  flat  to  all  orders  in  string  perturbation  theory.  Non­
perturbative  effects,  such  as  gaugino  condensation.  can  provide  a  non-trivial  
effective  potential.  As  we  shall  see  shortly.  if  the  dilaton  or  modulus  field  is  
to  be  used  as  the  inflaton,  it  is  necessary  to  assume  that  the  superpotential  is  the  
sum  of  two  components.  (See.  for  example.  [8).)  One  of  these  components  has  
a  large  scale  and  gives  an  effective  potential  with  unbroken  supersymmetry  and  
zero  cosmological  constant  at  the  global  minimum  when  the  other  component  
is  neglected.  This  large-scale  component  is  responsible  for  driving  inflation  
when  the  dilaton  or  modulus  expectation  value  is  in  a  flat  region  away  from  the  
minimum.  The  other  component  has  a  much  smaller  scale  and  is  responsible  for  
supersymmetry  breaking  in  the  low-energy  world.  It  is  the  former  component  
of  the  superpotential  that  we  are  interested  in  here.  Neglecting  the  low-energy  
component  of  the  superpotential.  it  is  convenient  to  write  the  effective  potential  
for  the  dilaton  S  in  the  form  

V  =  /L 
4  F(S.  -S)  (9.59)  

where  we  are  using  reduced  Planck-scale  units,  and  F(S,  oS)  is  of  order  l.  To  
obtain  density  perturbations  consistent  with  the  COBE  data.  we  require  

/L  '"  1016_1017  GeV  (9.60)  
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as  in  (7.115).  This  contrasts  with  a  scale  of  

(m3/2M p)I/2,..,  101°_1011  GeV  (9.61)  

for  an  effective  potential  due  to  the  superpotential  responsible  for  low-energy  
supersymmetry breaking  with  soft  supersymmetry  breaking  masses  on  the  scale  
of  102-HP  GeV.  This  is  the  reason  for  assuming  that  the  superpotential  is  the  
sum  of  two  components.  (It  should  be  noted  that  the  discussion  of  the  previous  
section  employed  gaugino  condensate  superpotentials  that  had  been  designed  to  
be  responsible  for  low-energy  supersymmetry  breaking.)  All  of  this  discussion  
applies  equally  to  the  use  of a  modulus  field  as  the  inflaton.  

Though  it  is  a  very  attractive  idea,  it  has  proved  difficult  to  find  a  realization  
of  it  in  practice.  Multiple  gaugino  condensate  potentials  for  the  dilaton,  such  
as  discussed  in  the  previous  section,  tend  to  be  too  steep  in  the  Re  S  direction  
for  inflation  to  occur.  If,  instead,  the  overall  modulus  field  T  is  employed  as  
the  inflaton,  with  a  superpotential  consistent  with  the  modular  invariance  of  an  
orbifold  compactification,  up  to  20  e-folds  of  inflation  can  be  obtained.  However,  
this  does  not  appear  to  be  possible  when  we  demand  that  the  effective  potential  has  
a  minimum  with  unbroken  supersymmetry  and  zero  cosmological  constant  [9].  

9.S  Ten-dimensional  string cosmology   

Heterotic  string  theory  begins  as  a  ten-dimensional  theory  with  the  need  for  six  
dimensions  to  be  compactified  to  provide  us  with  the  observed  four-dimensional  
world  (except  in  the  case  of  direct  constructions  in  four  dimensions,  such  as  the  
free-fermion  construction).  An  attractive  possibility  is  that  the  compactification  
of  the  six  extra  dimensions  has  a  cosmological  origin.  In  what  follows  we  shall  
treat  all  spatial  dimensions  as  being  wrapped  on  a  torus  with  all  dimensions  
initially  on  the  Planck  scale.  We  shall  study  a  mechanism,  due  to  Brandenberger  
and  Vafa  [10],  that  naturally  results  in  three  of  the  spatial  dimensions  becoming  
very  large,  corresponding  to  a  flat  space,  and  the  rest  of  the  spatial  dimensions  
remaining  on  the  Planck  scale.  The  dilaton  plays  a  crucial  part.  

As  discussed  in  section  9.3,  we  expect  the  dilaton  to  acquire  a  mass  of  the  
order  of  the  electroweak  scale,  or  one  or  two  orders  of  magnitude  larger,  when  
supersymmetry  breaking  occurs.  For  consistent  cosmology,  it  is  crucial  that  the  
dilaton  does  acquire  a  mass,  because  it  is  a  scalar  field  with  only  gravitational  
strength  interactions,  and  a  massless  field  of  this  kind  is  inconsistent  with  solar  
system  observations.  However,  there  is  no  a  priori  objection  to  the  dilaton  having  
been  massless  in  the  early  stages  of  the  universe  before  supersymmetry  breaking  
at  a  temperature  of around  100  Ge V.  

It  will  be  assumed  that  the  gravitational  (metric)  field  and  the  dilaton  field  
are  slowly  varying  (adiabatic  approximation)  so  that  it  is  a  good  approximation  to  
keep  only  the  leading  derivatives  in  the  effective  action.  It  will  also  be  assumed  
that  N  spatial  dimensions  are  large  dimensions  with  time  dependence,  while  the  
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remaining  Ne  spatial  dimensions  are  static  compact  dimensions.  In  the  case  of  
the  heterotic  string,  

N+Nc  =9.  (9.62)  

Eventually  we  want  N  =  3  but  we  shall  leave  N  general  for  now.  The  effective  
action  for  the  gravitational  field  and  the  dilaton  is  then  (up  to  a  multiplicative  
constant)  

So  =  f dN+1 x  JjGje-~(lR + 4GAB 8AI/>8BI/»  (9.63)  

where  GAB  is  the  metric  tensor,  G  =  det[ G AB],  1R  is  the  curvature  scalar  for  
the  (N  +  I )-dimensional  space  with  A  =  0,  1,  ... ,  N  and  I/>  is  the  dilaton.  In  
the  case  of  N  =  3,  the  connection  with  the  value  of  the  gauge  coupling  constant  
gSUing  at  the  string  scale  is  gsUing  = e~ and  the  connection  with  the  dilaton  field  of  
section  9.3  is  Re  S  =  2e-~. (The  antisyrnmetric  tensor  field  in  the  supergravity  
multiplet  is  being  ignored  for  simplicity.)  All  spatial  dimensions  will  be  taken  
toroidal  with  periodic  length  ai (t)  for  i  =  I,  2,  ... ,  N.  Write  

ai(t)  = eA/{t).  (9.64)  

The  metric  is  given  by  

N  

ds2  = dt2  - L al(t)(dxi )2.  (9.65)  
;=1  

Keeping  Goo  general  for  the  moment,  and  fixing  it  to  I  later  so  that  we  do  not  
lose  the  field  equation  obtained  by  varying  with  respect  to  Goo,  the  curvature  
scalar  (exercise  1)  is  

N  N  2  N  N  

1R=  _Goo [  L(~d+ (L~;) +2L£;  -GOOL~1 (9.66)  

;=1  1=1  ;=1  ;=1  

It  is  convenient  to  define  
N  

cl>  ==  21/>  - LA;  (9.67)  
;=1  

which  absorbs  a  factor  for  the  volume  of the  space  because  

e-~JiGi =  JGooe-().  (9.68)  

The  action  of  (9.63)  is  then  (exercise  2)  

N  

So  = -(I dNX)  /  dtJGooe-()Goo [  ~)i;)2 - (<i»2]  (9.69)  
1=1  
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In  general,  a  thennaJ  contribution  Sr  (from the  gas  of string modes  in  thennal  
equilibrium)  should  be  added  to  the  action.  It  has  the  fonn  

Sr  = (/ dNX)  /  dtJGooF(A;,fJJGoo)  (9.70)  

where  F is  the  free  energy  and  fJ  =  r- I  in  units  where  the  Boltzmann  constant  
k8  =  1.  The  complete  action  is  

Stot  = So  +  Sr.  (9.71)  

Varying  this  action  with  respect  to  <1>,  Ai  and  Goo  gives  (exercise  3),  after  
combining  field  equations,  

N  

(ci»2  - L(~;)2 =  e~E  (9.72)  
;=1  

••  ••  1  ~ 
Ai  - <l>Ai  =  ,e  P;  (9.73)  

N  

<b  - L(~i)2 =  !e~E.  (9.74)  
;=1  

The  thennodynamics that  has   been employed  here   is  as  follows.  The  free  energy  
is  

F  = E   - rs  (9.75)  

where  E  is  the  energy and   S  is  the  entropy with   

S  = _   (aF)  = fJ2   (aF)  .  
ar  (9.76) 

v  afJ  v  

The pressure  in   the  ith direction  is   

Pi  = -(:~t.  (9.77) 

As a   consequence of  (9.75) and (9.76),  

E=F_r(aF)  =F+fJ(aF)  . (9.78) 
aT  v  afJ  v  

With  this functionaJ   dependence of  F,   

aF  
E  = F+2aGoo   (9.79) 
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where  we  have  set  Goo  =  I  at  the  end.  From  (9.72)-(9.74),  we  may  deduce  
(exercise 4)  that   

N  

E+  Li;p; =  0  (9.80)  
;=1  

N  N  
1 •   = • {r S  E aF  .  '" .    - "'.  LJAi- = E   + LJAiP;.   (9.81 )   

i=1  aAI  i=1  

Combining these.   we  have  
5=0  (9.82)  

Thus, entropy   is  conserved.  
In  the first   instance, S  is  a  function   of f3  and the  Ai.   In  principle. we   can solve   

(9.82)  to  obtain  f3  as  a  function  of the   Ai.  Then,  E  can  be  written  as  a  function  
E(A) of  the  Ai  alone.  where,  for  the  moment,  A denotes the   Ai  collectively.  When  
the  entropy  is  constant.  

(9.83) Pi  = - (:~t. 
To  solve  the  equations  (9.72)-(9.74),  we  need  some  knowledge  of  E(A).  For  
the  moment  we  ignore  the  contribution  of  winding  modes.  The  properties  of  
E(A),  now  assumed  to  be  a  function  of a   single  A when   the  Ai  have  a  common  
value,  have  been  studied  using  the  microcanonical ensemble   [10).  It is   T-duality  
symmetric, i.e.   symmetric  under the   replacement of  aj (t)  by   a; 1 (t)  so  that  

E()")  =  E( -l.).  (9.84)  

For)..  ,...  0,  the  so-called  'Hagedom  region',  E()")  is  almost  constant.  For  
sufficiently  large  A,  only  massless  string  modes  contribute  to  the  partition  
function,  corresponding  to  a  radiation-dominated  universe.  Then  E()")  has  the  
exponential  behaviour  

E()")  ,...  e-A•  (9.85)  

Between  these  two  limiting  cases  there  is  incomplete  knowledge  of  E(l.).  
However,  it  is  known  that  E  decreases  with  /)..\  for)..  close  to  zero  and  this  is  
believed  to  be correct  for  alll..   

This  is  enough  information  to  see  that  a  radiation-dominated  era  is  
approached  as  time  increases  if  4>  starts  with  a  negative  value.  The  argument  
is  as  follows.  Because  E  is  positive,  (9.72)  implies  that  4>  can  never  become  
zero,  so  that  ci>  can  never  change  sign.  Also,  (9.74)  implies  that  (i,  is  positive.  
Consequently  4>  increases  and  if  it  starts  negative,  it  remains  negative  and  
approaches  zero  as  t  -+  00.  Now  consider equation   (9.73).  Using  (9.83),  and  
assuming that)..i   =).. for  all   i. (9.73)   is  

x - 4>i  = _!e4»  E'()..)   (9.86)  
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(9.86)  can  be  interpreted  as  the  equation  of  motion  for  a  particle  with  position  A.  
moving  in  a  potential  eoll  E(A)  with  a  damping  term,  because  ci>  <  O.  Since  the  
potential  decreases  as  IAI  increases  (ignoring  the  A dependence  of  4»,  A.  slides  
towards  increasing  values  of  A..  The  radius  of  the  toroidal  space  is  aCt)  = el(r)  
and,  hence,  as  A increases  a  increases,  when  A  >  O.  (There  is  a  duality  between  
large  and  small  values  of  aCt)  and,  hence,  between  positive  and  negative  values  
of A,  as  noted  in  (9.84».  Thus,  we  need  only  discuss  A  >  0.)  Since  the  spectrum  
of  a  string  theory  is  known,  the  entropy  can  be  calculated  at  a  given  temperature  
T  in  terms  of  the  radius  aCt).  We  know  that  entropy  is  constant.  Therefore,  a  
relationship  between  aCt)  and  T  can  be  calculated  numerically  that  ensures  this.  
As  IAI  decreases,  it  is  found  that  T  increases  towards  a  limit  referred  to  as  the  
'Hagedorn  temperature'.  As  IAI  increases,  T  falls  until  the  massive  string  modes  
go  out  of  equilibrium  and  we  enter  a  radiation-dominated  era  controlled  by  the  
massless  string  modes,  as  in  the  standard  model  of the  universe.  

We  now  ask  the  question:  'Why  is  the  number  N  of large  spatial  dimensions  
equal  to  31'  A  possible  explanation  turns  on  the  presence  of  winding  modes  in  
string  theories  compactified  on a  torus.  (Remember  that  we  have  taken  all  spatial  
dimensions  to  be  toroidal.)  Because  of  the  periodic  nature  of  a  torus,  the  closed­
string  boundary  conditions  for  the  spatial  bosonic  degrees  of  freedom  Xl ( r ,  eT)  
can  be  satisfied  when  

Xk(r,  eT  + rr)  = Xl(r,  eT)  + 2rr  Lk  (9.87)  

where  centre-of-mass  coordinates  xl  on  the  torus  have  the  identification  

Xl  =xl  +2rrLk  (9.88)  

where  Ll  are  referred  to  as  'winding  numbers'  and  are  proportional  to  the  torus  
radius  [11].  String  modes  with  non-zero  values  of  Lk  are  referred  to  as  winding  
modes.  If  pi  is  the  centre-of-mass  momentum  of  the  string  degree  of  freedom  
Xl,  the  mass-squared  of a  string  state  includes  (pi  + 2L k)2  and  (pk  - 2L 1)2.  As  
the radius  of the  torus increases, the squared mass  of a winding mode increases.  

The  idea  is  that  string  winding  modes,  unlike  other  matter  densities,  will  
oppose  expansion  of  the  dimensions  of  the  universe.  The  reason  for  this  is  that,  
in  the  presence  of  winding  modes,  the  behaviour  of  E(A)  is  very  different  from  
that  discussed  earlier.  As  just  discussed,  the  mass  squared  of  any  winding  mode  
increases as  the  square  of the  winding number, for large values  of the  torus radius,  
and  so  as  the  square  of the  torus  radius.  This  effect  results  in  E(A)  increasing  as  
eA.  Roughly,  the  growth  of  E  with  A in  (9.86)  means  that>:  <  0  (up  to  a  damping  
term)  so  that  i  eventually  becomes  negative,  A  starts  to  decrease  and  the  radius  
of  the  universe  starts  to  decrease.  In  this  way,  the  winding  modes  first  stop  the  
expansion  of the  universe  and  then  reverse  it.  

This  argument  is  not  quite  correct  because  of  the  eoll  term  in  (9.86).  As  
discussed  earlier,  if  ci>  starts  negative,  it  remains  negative  so  that  4>  decreases  
with  time.  Thus,  treating  A  as  the  position  of  a  particle,  the  strengthening  of  the  
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potential  with  increasing  A.  as  the  universe  expands  can  be  offset  by  the  behaviour  
of e4l •  A  more  careful  treatment shows that this  does  not affect the  outcome.  

Once  the  universe  starts  to  contract,  the  momentum  modes,  which  have  
behaviour  dual  to  the  winding  modes,  play  a  crucial  role.  They  make  a  
contribution  to  E(A.)  that  increases  as  A.  decreases  and  oppose  the  contraction.  
In  this  way,  the  universe  is  caused  to  oscillate  between  some  minimum  radius  and  
some maximum radius within a  few orders  of magnitude of the Planck scale.  

The  question  then  is  how  the  universe  can  ever  expand  to  a  large  scale.  
The  answer  is  that  string  winding  modes  can  annihilate  totally  or  partially  into  
momentum  states  (with  complete  annihilation  of  winding  number  occurring  
between  winding  modes  with  equal  and  opposite  winding  number).  In  this  way  
they  are  able  to  reach  thermal  equilibrium  with  other  string  states.  In  thermal  
equilibrium  the  number  of  winding  modes  becomes  small  as  the  torus  radius  
increases  and  winding-mode  masses  increase.  However,  it  is  difficult  to  reach  
equilibrium  if  the  winding  modes  find  it  difficult  to  collide  to  annihilate.  A  
collision  corresponds  to  the  two-dimensional  world  surfaces  of  the  two  states  
intersecting.  Generically,  this  does  not  occur  when  the  dimensionality  N  + I  of the  
extended  spacetime  in  which  the  winding  modes  move  is  greater  than  2  + 2  =  4.  
Thus,  for  N  +  I  >  4,  thermal  eqUilibrium  is  not  achieved  and  the  winding  modes  
stop  the  the  universe  expanding  much  beyond  the  Planck  scale.  However,  for  
N  +  I  :c;  4,  the  winding  modes  annihilate  readily  and  thermal  equilibrium  is  
reached  resulting  in  a  low  density  of winding  modes.  The  universe  is  then  able  to  
expand  to  a  large  scale.  

This  argument provides a  partial  explanation  of the  three-dimensional  nature  
of our  observed  universe.  If the  universe  starts  to  expand  in  some  number  N  >  3  
of  (spatial)  dimensions,  then  the  expansion  is  stopped  by  the  winding  modes.  
It  then  oscillates  for  a  while  before  expanding  again  in  some  number  N  of  
dimensions  that  may  differ  from  the  first  time.  This  may  happen  many  times  
until  finally  the  universe  starts  to  expand  in  some  number  N  of  dimensions  with  
N  :c;  3.  Then,  the  expansion  continues.  Of course,  this  only  explains  why  N  :c;  3  
and  not  why  N  =  3.  Therafter,  the  discussion  of  the  earlier  part  of  this  section,  
which  neglected  winding  modes,  applies  and  the  universe  evolves  to  a  standard  
radiation-dominated  universe.  

9.6  D-brane inflation   

The  discussion  so  far  in  this  chapter  has  been  in  the  context  of  weakly  coupled  
heterotic string theory.  Alternative models  of particle theory can be obtained from  
type  II  superstring  theories  because  of  the  existence  of  extended  so-called  'Dp­
brane'  solutions  which  occupy  p  +  I dimensions  of spacetime.  (See, for example.  
[12]  and  references  therein.)  As  well  as  closed  strings,  the  theory  contains  open  
strings  which  are  constrained  to  have  their  endpoints  on  D p-branes.  Chiral  matter  
can be obtained from open strings whose endpoints are on D p-branes located at  an  
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orbifold  fixed  point  in  the  compact  dimensions.  We  shall  assume  that  this  orbifold  
is  a  product  of  three  two-dimensional  tori  with  points  on  the  tori  identified  under  
the  action  of a  discrete  ZN  or  ZM  x  ZN  group.  

Models with the  gauge fields  of the standard model (up to some  U  (I)  factors)  
and  the  massless  matter  content  of  the  standard  model  (up  to  some  vector-like  
matter)  have  been  obtained  by  employing  D3-branes  and  D7-branes  located  at  
fixed  points.  The  presence  of  D7-branes  as  well  as  D3-branes  is  necessary  to  
satisfy  certain  'twisted  tadpole'  cancellation  conditions,  which  are  required  by  
a  consistent  string  theory  and,  among  other  things,  ensure  non-Abelian  gauge  
anomaly  cancellation.  The  models  also  contain  D3-antibranes  and  D7-antibranes  
which  are  needed  to  satisfy  untwisted  tadpole  cancellation  conditions.  The  chiral  
matter  states  are  associated  with  open  strings  with  their  endpoints  on  D3-branes  
or  with  one  endpoint  on  a  D3-brane  and  the  other  on  a  D7 -brane.  In  such  theories,  
the  string  scale  and  the  compactificatioD  scale  do  not  necessarily  coincide  and  low  
string  scales  are  possible.  

An  important  aspect  of  such  constructions  is  that  the  D p-branes  and  Dp­
antibranes  can  be  prevented  from  moving  from  the  fixed  points  in  some  models  
by  the  requirement  that  the  twisted-tadpole  conditions  are  always  satisfied.  Then,  
the  brane-antibrane  separations  are  fixed  except  to  the  extent  that  they  share  in  
the  contraction  or  expansion  of  a  toroidal  space  when  the  radius  of  space  varies.  
Thus,  a  modulus  field  in  the  associated  low-energy  supergravity  theory  whose  
expectation  value  is  a  brane-antibrane  separation  is  not  a  candidate  inflaton.  
However,  possible  candidates  are  the  moduli  scalars  T;,  i  =  1,  2,  3,  the  real  parts  
of  which  are  associated  with  the  radii  Ri  of the  three  tori  in  the  form  

ti  ==  Re  T;  =  e'M; Rl  (9.89)  

where  Ms  is  the  string  scale  and  tP  is  the  ten-dimensional  dilaton.  The  four­
dimensional  dilaton  S  is  also  a  candidate.  Models  of  inflation  have  been  
constructed  [13]  in  which  S  or  one  of  the  T;  provides  the  inflaton  while  the  other  
moduli  (T;  or  S)  are  frozen  by  some  unidentified  mechanism.  

To  discuss  such  models  of inflation,  we  now  require  the  form  of the  effective  
potential  V  as  a  function  of  the  unfrozen  modulus  field.  It  is  convenient  to  use  
T-duality  with  respect  to  all  directions  simultaneously:  

a'  
i=I,2,3  (9.90) Ri  -+  Ri  

where  
2 a'  = M s- (9.91)  

to  map  D3-branes  into  D9-branes  and  D7-branes  into  D5-branes.  We  need  the  
potential  due  to  the  tension  in  the  branes.  This  is  proportional  to  the  volume  of  
the  branes and,  for a  theory  of D9-branes and  D5-branes,  is  of the form  

3  

V  =  N9V9+  ENs/Vs/  (9.92)  
;=1  
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where  N9  is  the  number  of D9-branes,   and  NSi  is  the  number  of D5;-branes,   
i.e.  the  number of  D5-branes   which  wrap  the  ith torus   (as  well  as  living  in  four­
dimensional  spacetime).  The potential   V9  due  to the   D9-branes is   of the  form  

V9  = T9RfR~R~  (9.93)  

with  the  D9-brane tension   
T9  =  a9M:Oe-·  (9.94)  

where a9   is  a dimensionless  constant.   Also.  the  potential  due to   the D5;-branes  is   
of the form   

VS;  = TsR;  (9.95)  

with  the  D5-brane tension   
TS  =  asM6s e -.  (9.96) 

and as   a dimension less constant.  These potentials can  be  rewritten  in terms  of the  
real  parts  of the  four-dimensional dilaton   S and   the  T;  moduli  fields:  

s  -= ReS  -- M6s e-.R2R2R2   123  (9.97) 

t;  ==  ReT;  = M;e-.R;   fori  =  1,2,3.  (9.98)  

Then,  
3  

V  = M:[  N9k9S  + ?:NSiksit;]   (9.99)  
,=1  

where  k9  and  ks;  are  dimensionless  constants  of  order  I.  There  is  also  a  
contribution  to  the  potential  from  the  exchange  of massless   bulk  states,  such  as  
the  graviton,  which  we  are  neglecting  here.  It can   be  shown  that  this  is  small  
compared to  the   retained  terms  when  the  moduli  are  large.  

To  apply  this  potential  to  the  study  of inflation,   it  is  convenient to   recast  it  
in  terms  of fields   with  canonical  kinetic  terms.  After  Weyl  rescaling  to  remove  
the  factor of  e-~ in  front of the curvature scalar (displayed in (9.63», the  kinetic  
terms for   moduli  are  

Ckinctic  = ~M~Jiiig"'"( a",  Insa" Ins  +  t a",lntia" In  ti)  (9.100)  
,=1  

the  Weyl  rescaling being   

8",11  - ).g",1I  (9.\01) 

with  
M2e~ 

).  =  '8;' (9.\02) R2 R2   .  
s  1 2  3  

These  kinetic  terms  arise  from  the curvature  scalar   

IR.  ==  GabRab  (9.\03)  
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where  a,  b  = 0,  1,  .•.  ,9  and  Gab  is  of the  fonn  

Gab  =  diag[gl'lI(X),  -R?(x)8mll ,  -R~(x)8r.s, -Rj(x)811I1 ]  (9.104)  

where  x  denotes  the  four-dimensional  spacetime  coordinates.  In  the  first  instance.  
the  kinetic  terms  are  then  given  in  terms  of  RI,  R2  and  R3.  After  the  Weyl  
rescaling  (9.101),  (9.102),  these  are  recast  in  the  form  (9.100)  in  terms  of  sand  
Ij.  The  potential  is  then  re scaled  by  a  factor  A 2  to  give  

M 9  (k9N9  ks\Ns\  kS2 NS2  kS3NS3) V  =  --+--+--+--.  (9.105) 
P  tl t213  st2t3  Stl t3  st2tl  

If,  for  example,  we  now  freeze  the  moduli  tl,  12  and  13  and  treat  s  as  the  
inflaton,  then  the  inflaton  field  X  with  canonical  kinetic  terms  is  given  by  

(9.106) s  =exp (  ~:). 
The  potential  for  the  inflaton  is  of the  fonn  

V  = KO  + Kle-..r2X/Mp  (9.107)  

where  KO  and  KI  are  constants  

k9N9M~ ks\Ns\  kS2 NS2  kS3Ns3 
and  KI=--+--+--.  (9.108) 

KO  =  tlt213  1213  I1  t3  t2tl  

We  can  now  study  slow-roll  inflation  with  this  potential  in  the  usual  way.  The  
slow-roll  parameters  €  and"  are  defined  in  (7.184)  and  (7.185).  In  the  present  
case,  

K2  '"  ZKI  '" €  ~ -1.  e-2..,2X/Mp  and  "  ~ _  e-..,2X/Mp  (9.109) KJ  KO  

when  X  »  Mp.  Whenever  X  »  Mp,  the  parameters  €  and  "  are  small  and  
slow  roll  ocurs.  Thus.  slow  roll  is  generic  for  large  values  of  the  modulus  which  
is  playing  the  role  of  the  inflaton.  This  approximation  also  allows  us  to  be  in  the  
low-energy  field  theory  limit  which  requires  weak  coupling  e.  «  1.  

The  next  question  to  be  addressed  is  when  inflation  ends.  For  KI  <  0,  the  
potential  is  such  that  X  (which  is  certainly  positive  in  this  approximation)  will  
decrease  with  time  and.  eventually,  the  slow-roll  conditions  will  no  longer  be  
satisfied  if IKI/KOI  ~ 1.  Conversely,  for  KI  >  0,  X  increases  and  there  is  no  end  
to  slow  roll.  However,  as  X  grows,  s  grows,  and  either  tP  diminishes  or  one  of  
the  Ri  diminishes.  If the  latter,  then  at  least  one  of  the  Ri  can  become  smaller  
than  the  string  scale  and  low-energy  field  theory  and  the  validity  of  the  low­
energy  potential  V  break  down.  In  this  case,  there  is  a  striking  mechanism  which  
could  end  inflation.  There  can  be  a  critical  value  of  a  radius  at  which  a  tachyon  
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appears  in  the  spectrum.  Then,  inflation  ends  in  a  version  of  hybrid  inflation.  In  
some  orbifold  models  a  brane-antibrane  pair  then  annihilates  to  produce  a  single  
brane  with  one  dimension  more  than  the  original  brane,  wrapped  around  this  extra  
dimension,  which  is  stable  at  a  smaller  radius.  The  reheating  is  then  controlled  by  
the  difference  in  tension  between  the  brane-antibrane  pair  and  the  single  brane.  

As to the number of e-folds of inflation,  it does not appear possible [13] in  the  
models  described  earlier  to  obtain  a  sufficient  number  of e-folds,  except  for  large  
values  of  the  Ns;.  In  that  case,  the  approximation  of  retaining  only  the  tension  
term  in  the  potential  breaks  down  and  even  including  exchange  of  single  bulk  
states  (e.g.  the  graviton)  in  the  brane-antibrane  interaction  may  not  be  sufficient.  
However,  this  problem  may  be  overcome  [13]  when  the  compactified  dimensions  
form  an  orientifold  rather  than  an  orbifold.  Then,  there  still  remains  the  difficulty  
that we  have  had to freeze  all  but one  of the  T;  moduli  or  dilaton  fields  arbitrarily.  

An  alternative  type  of  brane  model  (see,  for  example,  [141  and  references  
therein)  is  based  on  intersecting  D-branes  with  chiral  matter  living  on  (some  of)  
the  intersections,  in  the  sense  that  it  is  associated  with  open  strings  that  begin  and  
end at a  particular intersection  of two D-branes.  This type  of model  also provides  
a satisfactory model  of in flation  [15] up to a point but with the same difficulty  of  
having  to  freeze  all  but  one  of  the  moduli  discussed  earlier.  

9.7  Pre-big-bang  cosmology  

The  presence  of  the  dilaton  in  the  heterotic  string  theory  action  allows  for  a  
possible  alternative  origin  for  inflation  in  a  period  of  evolution  of  the  universe  
before  the  big  bang  [16].  The  basic  idea  is  that  it  may  be  possible  to  join  together  
two  solutions  of  the  cosmological  field  equations,  one  for  t  <  0  and  one  for  
t  >  0,  with  the  following  properties.  The  t  <  0  solution  is  chosen  to  have  the  
dilaton  tP  growing  to  produce  a  growing  Hubble  parameter  H,  so  that  the  universe  
expands  rapidly  (dilaton-driven  inflation).  This  is  an  even  more  rapid  expansion  
than  the  more  familiar  inflation  driven  by  an  approximately  constant  H.  The  
I  >  0  solution,  conversely,  has  14>1  decreasing  and  4>  rolling  into  a  minimum  of  its  
potential.  Thereafter,  there  is  FRW  cosmology  (with  a  constant  dilaton),  possibly  
higher-dimensional,  with  compactification  to  three  spatial  dimensions  to  follow.  

As  t  =  0  is  approached  from  t  <  0,  we  shall  see  that  it  is  possible  for  the  
value  of  4>  to  be  positive  and  diverge  logarithmically,  which  pushes  the  universe  
into  a  strongly-coupled  regime  because  eU  controls  the  strength  of  the  gauge  
and  gravitational  interactions  in  heterotic  string  theory.  At  some  point,  weakly­
coupled  string  theory  breaks  down  and  non-perturbative  effects  may  allow  the  
transition  between  the  t  <  0  and  t  >  0  weakly-coupled  solutions.  We  shall  now  
fill  in  a  little  of the  detail  of this  idea.  

The  effective  action  for  the  gravitational  field  and  dilaton  is  as  in  (9.63).  
We  shall  leave  the  number  of  spatial  dimensions  N  arbitrary,  allowing  for  the  
possibility  that  the  cosmology  starts  higher-dimensional  with  compactification  to  
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three  dimensions  to  follow,  e.g.  cosmology  could  start  with  the  full  nine  spatial  
dimensions of the heterotic string.  With the ansatz  of (9.65) and (9.64), the action  
is  given  by  (9.69)  leading  to  the  field  equations  (9.72)  to  (9.74).  Making  the  
simple  assumption  that  the  universe  starts  empty,  the  thennal  contributions  may  
be  dropped and   the  field  equations simplify   to  

N  

(ti»2  = LO:;)2   (9.110)  
;=1  

i , =  ti>il  (9.111)  
N  

ii>  =  L(A;)2  (9.112)  
i=1  

where Ai   is  defined  in  (9.64) and   <1>  in  (9.67).  
For t   =1=  0,  there  are  solutions of (9.110)-(9.112) with  (exercise 5)  

<1>(t)  = <1>0   -In It I  and  A(t)  =  l() ±   _1_lnltl ./N  (9.113)  

in  the  isotropic case   Ai  = A for all   ;. Equivalently,   there  are  solutions  

2I;(t)  =  2t/Jo  + (±,.,/N  - 1)  In  It I  and  a(t) =   aoltl±l/JN  (9.114)  

in  the  isotropic case   aj  = a  for all   i.  The corresponding  Hubble  parameter  is   

a  I 
H=-=±- (9.115) 

a  ./Nt  

which  diverges  as t   -+  O.  The  two solutions   for A  arise   because of  the   T-duality  
symmetry of  the  equations  (9.110)-(9.112)  under  the   transformations  

A;  -+  -AI  <1>-+<1>  (9.116)  

or, equivalently,   
N  

aj  -+­ tP  -+ tP   -
aj  

L In   aj  (9.117)  
1=1  

which  exchanges small   and  large  scales  accompanied  by  an  obligatory action   on  
the  dilaton.  The  equations  and  their  solutions  also  possess  the  usual  t  -+  -t  
symmetry of  FRW   cosmology.  Because  of the   singularity  at t   = 0,   in  principle,  
we  may  pair either of the  solutions for t   <  0  with either of  the  solutions for t   >  O.  
The  hope  is that   non-perturbative effects   will  allow  a  smooth  matching  at  t  = O.   
However,  after  the  big  bang,  we  require  that  the  universe  is  expanding  so,  for  

positive  t,  we  must choose  the   solution  with  a(t)  ex  Itl+I / JN.  Now  consider the   
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Figure  9.2.  Hubble  parameter  for  a  possible  solution  linking  the  pre-big-bang  era  to  the  
post-big-bang  era.  

behaviour  of  the  solution  obtained  by  pairing  this  positive-time  solution  with  the  
negative-time  solution  in  which  the  universe  is  also  expanding.  That  is  

{ (.IN  - I) In  I  I>  0  
2tfJ(l)  - 24>0  =  -(.IN  +  1)ln(-I)  1<0  

II/./N  I  >  0 
{  (9.118) a(l)  QC  (_t)-I/./N  1<0  

and  

H(I)  =  r.:;  
I  

.  (9.119)  
",NIII  

As  advertised  earlier,  (for  N  >  I)  this  gives  tfJ(l)  growing  for  all  I  =F  0,  whereas  
the  Hubble  parameter  H,  which  is  positive  on  both  branches  of  the  solution,  is  
growing  for  I  <  0  but  decreasing  for  I  >  0  (see  figure  9.2):  tfJ(l)  is  discontinuous  
and  diverges  logarithmically  as  I  -+  O.  This  'pre-big-bang'  cosmology  provides  
an  alternative  to  inflation  due  to  a  scalar  field  rolling  in  a  potential.  There  is  no  
potential  for  the  dilaton  tfJ  but  nevertheless  the  universe  inflates  when  I  <  O.  

The  biggest  difficulty,  perhaps,  is  that  it  is  not  known  whether  the  pre-big­
bang  and  post-big-bang  eras  can  be  joined  together  smoothly  (a  form  of  the  
graceful  exit  problem)  because  the  region  close  to  I  = 0  requires  non-perturbative  
string  theory.  It  has  also  been  suggested  that  fine  tuning  [17]  is  involved  in  a  
successful pre-big-bang scenario. One  aspect  of this problem is that as a result  of  
(9.118),  when  a(t)  increases  by  many  orders  of  magnitude  while  I  <  0  to  solve  
the  problems  nonnally  solved  by  inflation,  e~(') also  increases  by  many  orders  of  
magnitude.  However,  as  observed  after  (9.63),  e~ is  gsbing'  This  we  expect  to  
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be of order unity in  the post-big-bang universe and  so the  initial  value  of", must  
be  tuned to   be very   small.  Moreover,  the  density  perturbations due   to  the  dilaton  
(playing  the  role  of the   inflaton  here)  are  not  consistent  with  the  COBE  data.  
However,  it  has been  argued  that  this  last  problem  can  be   overcome if  the   density  
perturbations  required  by  COBE  are  due  to an   axion  field  in  a  non-perturbative  
potential.  (See the   third reference   in  [16].)  

9.8  M-theory cosmology-the  ekpyrotic  universe   

Another example   of a   cosmology  in  which  there  is  a  period  of evolution   of the   
universe  prior to   the  big  bang can   be obtained  by  considering   the  collision of  the   
so-called  'boundary branes'   which  occur in   M-theory.  We  first  review  briefly  the  
M-theory description  of strongly-coupled heterotic  string  theory [18].  

Strongly-coupled  heterotic  string  theory  in  ten  dimensions  is  known  to  be  
dual  to  a  theory  in  1 1 dimensions.   If the  strongly-coupled heterotic   string  theory  
has  six  dimensions compacified  on  a Calabi- Yau  manifold or  orbifold  X,   then  the  
dual  theory  has  seven  dimensions compactified   on  X x   SI/Z2.  Here  SI  is  in  the  
X 10  direction  with  

-1rP  ~ X IO ~ 1rP  (9.120)  

and  the  identification  
X IO  .....  X IO  + 21rp.  (9.121)  

The action   of the  Z2  group is   

Z2  : X  IO  ....  _XIO.  (9.122)  

Consequently, there   are  two  fixed  points  under the   action  of Z2,   namely  

XIO=o  and  X IO  = 1Cp.  (9.123)  

Because of  the   Z2  symmetry  (9.122), the   quotiented circle   is  equivalent to   a  line  
segment of  length 1rp.   

The  low-energy  limit  of  this  1 I-dimensional  theory  is  II-dimensional  
supergravity.  The  E8  gauge  fields  of the   observable  sector  (and  the  observable  
chiral  matter)  live  on  one  end  of  the  line  segment  (on  one  four-dimensional  
boundary brane)   while  the  E8  gauge  fields  of the   hidden  sector live   on  the  other  
end  of the   line  segment  (on  the  other boundary   brane).  The gravitational   fields  
propagate in   the  I I-dimensional   'bulk'.  The  dilaton  expectation  value  e. in   the  
ten-dimensional theory   is  reinterpreted,  up  to  a  numerical  factor,  as  the  length of   
the  line  segment in   the  1 1 -dimensional  theory  in   M; I  units.  

The  idea  behind  M-theory  cosmology  [19]  (the  so-called  'ekpyrotic  
universe-the  universe  being  consumed  by  fire  and  reconstituted  out  of  fire,  
as  in  Stoic  philosophy)  is  that  two  four-dimensional  boundary  branes  may  
move  towards  each  other  and  collide  before  separating  again.  The  size  of the   
fifth  dimension  (which  is  the  separation  of the   two  four-dimensional  boundary  
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branes)  goes  through  zero  when  the  branes  collide.  Since  the  separation  of  the  
boundary  branes  is  related  to  the  dilaton  in  the  dual  description,  the  dilaton  
dynamics  discussed  in  the  previous  section  may  be  employed  taking  (the  number  
of  uncompactified  spatial  dimensions  to  be)  N  =  4  (and  ignoring  the  six  
compactified  dimensions.)  As  before,  we  require  the  universe  to  be  expanding  
after  the  big  bang  but  now  we  choose  the  alternative  solution  in  which  the  universe  
is  contracting  before  the  big  bang.  Thus,  the  solution  corresponds  to  the  choice  
}.,  =  +(1/..{ii)  In  \t\  on  both  branches.  For  N  = 4,  this  gives  

1  
2t;(t)  - 2t/Jo  =  In  \t\  a(t)  Q(  \tI 1/ 2  so  that  H  =  -.  (9.124) 

2t  

This  choice  is  qualitatively  different  from  the  one  made  in  pre-big-bang  
cosmology.  There,  before  the  big  bang,  l/J(t)  is  positive  and  diverges  as  t  -+  0,  so  
that  the  gauge  and  gravitational  interactions,  whose  strength  is  controlled  by  e~, 
become  strong  and  the  vicinity  of  t  =  0  is  in  a  strongly-coupled  regime.  Here,  
l/J(t)  is  negative  near  t  =  0  and  diverges  as  t  -+  O.  Instead  of  strong  coupling,  
the  vicinity  of  t  =  0  is  in  a  weakly-coupled  regime.  When  the  branes  collide,  
radiation  modes  are  excited  by  the  kinetic  energy  of  the  collision  and  a  hot  big  
bang  is  triggered.  

The  ekpyrotic  universe  allows  a  new  solution  to  the  horizon  problem.  The  
collision of the  two boundary branes is a non-local event over a region much larger  
than  the  Hubble  radius.  It  is  this collision that generates the temperature  of the  hot  
big-bang universe.  Thus, a large degree  of homogeneity in the cosmic microwave  
background  radiation  is  to  be  expected.  However,  a  number  of  difficulties  in  
trying  to  get  the  ekpyrotic  universe  to  explain  things  normally  explained  by  
inflation  has  been  pointed  out.  (See  [20]  and  references  therein.)  

9.9  Exercises  

1.  Derive  the  curvature  scalar  of  (9.66).  
2.  Derive  the  action  (9.69).  
3.  Obtain  the  field  equations  (9.72H9.44)  from  the  action  (9.69).  
4.  Derive  the  finite-temperature  equations  (9.80)  and  (9.81).  
5.  Derive  the  solutions  of  the  cosmological  field  equations  for  pre-big-bang  

cosmology  (9.113).  

9.10  General references   
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Chapter 10 

Black holes in string theory 

10.1 Introduction 

Besides 'predicting' general relativity as the effective low-energy (classical) 
theory of gravitation, string theory also provides a (perturbative) quantum theory 
of gravity. Since it is the only such theory known, one might hope that string 
theory would offer insights into the quantum aspects of gravitation that are not 
available elsewhere. This is indeed the case. 

In 1971, Hawking [I] showed that area of the event horizon of a black 
hole must increase with time. This prompted the observation that the area 
of the event horizon is analogous to the entropy of a thermodynamic system. 
It was subsequently shown that quantum mechanics requires that black holes 
besides absorbing radiation must also emit it and that black holes are indeed 
thermodynamic systems. Specifically, it was shown by Bekenstein [2] and 
Hawking [3] that the entropy is proportional to the area of the event horizon. 
Our experience with statistical mechanics as the microscopic theory underlying 
thermodynamics leads us to expect that this entropy is associated with the 
number of microstates of the (black-hole) system. It is precisely this aspect 
that is illuminated by string theory. As we shall see, for certain black-hole 
solutions of string theory, the number of microstates can be calculated, and the 
resulting multiplicity reproduces precisely the Bekenstein-Hawking formula for 
the entropy. 

In the next section, we review the definition of the black-hole event horizon 
and outline the proof that the area of its two-dimensional section cannot decrease. 
In section 10.3, we show why quantum mechanics requires black holes to have a 
temperature that is determined by their 'surface gravity' and entropy proportional 
to the area of the (two-dimensional section of the) event horizon. The number of 
perturbative microstates in string theory is evaluated in section 10.4 and shown to 
be quite inadequate to explain the derived entropy of black holes. The special 
class of black holes for which string theory is able to provide a microscopic 
explanation of their entropy are (certain) 'extreme' black holes, which have both 
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mass  and  charge  (or,  more  generally,  charges).  These  and  their  generalization  
to  five  dimensions  are  discussed  in  the  following  section.  To  get  black  holes  
from  string  theory,  we  need  to  find  analogous  solutions  to  the underlying  classical  
field  theory.  This  is  type  II  supergravity,  which  is  described  in  section  10.6.  It  
involves  the  field  strengths  of certain  (antisymmetric)  'Ramond-Ramond'  gauge  
fonn-fields.  These  lead  to  a  generalized  notion  of  electric  charge,  which.  in  
turn,  indicates  the  existence  of  (non-perturbative)  extended  objects  called  'D­
branes'  which  have  non-zero  Ramond-Ramond  charges.  This  is  described  in  
section  10.7.  In  section  10.8  we  construct  the  (five-dimensional,  extreme)  black­
hole  solutions,  with  three  charges,  that  have  an  event  horizon  with  non-zero  area.  
If we  use  this  area  in  the  Bekenstein-Hawking  fonnula,  the  entropy  of  the  black  
hole  is  detennined  entirely  by  the  (product  of  the)  charges  used.  The  non-zero  
charges  have  an  immediate  interpretation  in  terms  of  underlying  microstates  and  
the counting  of these is done in section  10.9. The number  of microstates obtained  
agrees  precisely  with  that  predicted  from  the  calculated  Bekenstein-Hawking  
entropy.  

10.2  Black-hole event  horizons   

It  is  convenient  to  use  mass  units  in  which  the  Planck  mass  m  p  and,  hence,  
Newton's  constant  GN.  are  unity:  mp  =  G;I/2  =  1.  The  most  well-known  
black-hole  solution  of  general  relativity  is  the  Schwarzchild  solution  which  gives  
in  spherical polar coordinates the line element outside  of a spherical body  of mass  
M:  

&2  ==  glLII  dx lL  dx ll  (10.1  )  

2M)  2 (  2  2  2 2M)-1 =  (  1--;- dt  - 1--;- dr  -r  d02  (10.2)  

where  

dO~ ==  d02  + sin2 8  dt/J2  (10.3)  

is  the  line  element  on  the  unit  two-sphere  S2.  The  metric  is  singular  at  r  = 2M  
but  this  is  merely  a  coordinate  singularity.  For  example,  a  particle  on  a  radial  
timelike  geodesic  r  =  R(t)  falls  from  its  starting  position  at  r  =  R(O)  >  2M,  
through  R  =  2M.  and  reaches  R  = 0  in  a  finite  proper  time  (exercise  1).  On  a  
radial  null  geodesic,  

dt2  =  (I  _ 2~)-2  dr2  ==  (dr",)2  (l0.4)  

where  

rIll  ==  r  + In  I r  - 2M  I  (10.5) 2M  .  
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As  r  ranges  from  2M  to  00,  ,*  ranges  from  -00  to  00.  Thus,  d(1  ±  ,*)  =  0  
on  radial  nulI  geodesics  and  the  ingoing  radial  null  (Eddington-Finkelstein)  
coordinate  is  defined  as  

v  ==  I  + ,*  =  t  +  r  +  2M  In  12~ - I1  - 00  <  v  <  00.  (10.6)  

Using  v  as  a  coordinate  instead  of  I  gives  

ds2  =  (I - 2~) dv2  _  2dv  dr  - r2  de2  - ,2 sin2  (J  dtfJ2.  (10.7)  

This  metric  is  defined  initially  for  r  >  2M,  since  the  relation  v  = ,  +  ,*(r)  is  
only  defined  for,  >  2M.  However,  it  can  now  be  analytically  continued  to  alI  
r  >  0  and,  in  these  coordinates,  there  is  no  singularity  at,  =  2M.  (There  is  
a  singularity  at  r  =  0  where  the  curvature  becomes  infinite.  Such  a  singularity  
cannot,  of course,  be  removed  by  a  coordinate  transformation.)  At  large  values  of  
r,  the  light  cones  are  almost  Minkowskian  and  they  alIow  a  particle  (or  photon)  
to  move  outwards  or  inwards  on  a  timelike  (or  null)  worldline.  However,  as  ,  
decreases  the  lightcones  gradually  tilt  over.  When,  :5  2M,  2dr  dv  :5  0  for  alI  
non-spacelike  (i.e.  timelike  or  null)  world  lines.  Since  dv  >  0  for  future  directed  
world  lines,  it  follows  that  dr  :5  0,  with  equality  for  radial  null  geodesics  when  
r  =  2M.  When,  <  2M,  all  non-spacelike  curves  necessarily  move  inwards  
and  hit  the  singularity  at  r  =  O.  Thus,  if  the  massive  body  emits  light  from  its  
(spherical)  surface  at  r  =  rB  <  2M,  the  light  never  escapes  to  an  observer  in  
the  region,  >  2M.  Such  an  observer  might  infer  the  presence  of  the  body  from  
its  gravitational  field  but  she  could  not  see  it.  The  hypersurface  traced  out  in  
spacetime  by  the  spherical  surface  r  =  2M  is  calIed  the  'event  horizon'  of  the  
(Schwarzchild)  black  hole.  The  area  of  a  two-dimensional  section  of  the  event  
horizon  is  

An  =  4tr(2M)2  =  16trM2.  (10.8)  

Let  S(x)  be  a  smooth  function  of  the  spacetime  coordinates  x#  and  
consider  a  family  of  hypersurfaces  S(x)  =  constant.  The  vectors  normal  to  the  
hypersurfaces  are  given  by  

- as  
(10.9) 1#  =  f(x)  ax#  

where  j  is  an  arbitrary  non-zero  function.  If  12  =  0  for  a  particular  hypersurface  
.N  in  the  family,  then  .N  is  said  to  be  a  'null'  hypersurface.  So  for  the  spherical  
hypersurfaces  S  ==  r  =  constant,  with  the  black-hole  metric  (10.7),  

P  =  g#v1/L1v  =  grr p  = _  (I  _ 2~) p.  (10.10)  

Thus,  the  event  horizon  r  =  2M  is  a  null  hypersurface  and  (exercise  2)  

1#lr=2M  =  g#V1vlr=2M  = - j~~. (10.11  )  
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We  can  think  of  the  metric  (10.2)  or  (10.7)  as  being  that  which  arises  
following  the  spherically  symmetric  collapse  of  a  star  with  mass  M  ~ 1.5­
2m0'  It  is  instructive  to  consider  a  series  of  light  Hashes  emitted  near  the  centre  
of  the  collapsing  star,  which  is  assumed  to  be  made  of  transparent  matter.  In  
the  early  stages,  the  density  of the  star  is  low,  the  wavefront  of  the  light  will  be  
approximately spherical and its  area proportional to the  square of the time elapsed  
since the emission  of the flash.  However, the gravitational attraction  of the stellar  
matter through  which  the  light  is  passing  deHects  neighbouring rays  towards  each  
other,  reducing  the  rate  at  which  they  are  diverging  from  each  other.  In  other  
words,  the  gravitational  effect  of the  matter  is  to  focus  the  light  and  to  reduce  the  
area of the wavefront from what  it otherwise would have been.  In the early stages,  
the wavefront continues to increase in  area, crossing the surface  of the collapsing  
star and eventually reaching infinity.  As the collapse continues, the matter density  
increases  and  so  does  the  focusing  effect,  until  a  critical  wavefront emerges  from  
the  surface  of  the  star  with  zero  divergence.  Outside  of  the  star,  this  wavefront  
will  remain  constant  and  will  be  the  surface  r  =  2M  discussed  earlier  whose  
spacetime  evolution  is  the  event  horizon.  It  is  the  boundary  of  the  spacetime  
region  from  which  it  is  not  possible  to  escape  to  infinity.  It  is  generated  by  null  
geodesics  which  have  no  future  endpoint but  which  do  have  past  endpoints  (at  the  
emission of the flash.)  The divergence of these null geodesic generators is positive  
during  the  collapse  phase  and  zero  in  the  final  time-independent  state.  The  area  
of  a  two-dimensional  section  of the  event  horizon  increases  monotonically  from  
zero  to  the  final  value  (10.8).  Subsequent  Hashes  will  be  focused  so  much  by  the  
stronger  gravitational  focusing  that  their  rays  begin  to  converge  and  the  area  of  
the  wavefront  decreases.  

Now consider what happens when a  thin spherical shell  of matter of mass  8M  
collapses  from  infinity  at  some  later  time  and  hits  the  singularity  at  r  =  O.  During  
the  collapse,  the  metric  is  spherically  symmetric  but,  of course,  time-dependent.  
Afterwards,  it  will  have  the  form  (10.2)  or (10.7)  but  with  M  replaced  by  M +8M.  
Since  8M  is  necessarily  positive,  the  area  of  the  two-dimensional  section  of  the  
event  horizon  must  increase:  

8AH  =  321rM8M  >  O.  (10.12)  

These  results  illustrate  general  results  for  black  holes  that  are  true  even  
without  spherical  symmetry.  The  focusing  or  converging  effect  that  follows  
from  the  fact  that  the  gravitational  mass  is  always  positive  can  be  described  
quantitatively using the positive-definiteness  of the energy density.  Consider a set  
of null  geodesics,  and  let'I'  = dx'" /dv  be  a  null  tangent vector to  these  geodesics,  
where  v  is  an  affine  parameter  for  the  geodesic.  At  each  point,  we  can  define  two  
unit  spacelike  vectors  a'"  and  b'"  that  are  orthogonal  to  each  other  and  to 'I'.  It  is  
convenient  to  define  the  complex  vectors  

m'"  =  1  _'"  1  - ../2(al'  + ib"')  and  m  ==  ../2(a'"  - ib"').  (10.13)  
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Then  

m"'m",  = 0  =  m"'m",  = I"'m",  =  I"'m",  and  m"'m",  = -I.  (10.14)  

The  fact  that  the  curves  of this  set  are  geodesics  requires  that  

I",;vm"r'  =  0  ( 10.15)  

where.  as  usual.  the  semi-colon  indicates  covariant  differentiation.  The  average  
rate  of convergence  of nearby  null  geodesics  is  encoded  by  the  quantity  

p  ==  I,,;vm"'mv  (10.16)  

which  is  real  provided  that  the  null  geodesics  lie  in  a  three-dimensional  null  
hypersurface,  as  we  shall  assume.  Let  N  be  the  null  hypersurface  generated  
by  null  geodesics  with  tangent  vectors  I"  and  let  AT  be  a  small  element  of  
a  space like  two-dimensional  surface  in  N.  We  can  move  each  point  of  AT  a  
parameter  distance  c5v  up  the  null  geodesics.  Then  the  area  A  of  AT  changes  by  

<SA  =  -2Apt5v.  (10.17)  

Thus,  as  we  should  expect.  the  area  decreases  if  the  convergence  p  is  positive.  
The  behaviour  of  p  along  the  geodesics  is  determined  from  the  Newman-Penrose  
equations  [4]  which  for  an  affine  parametrization  (so  IVI,,;v  =  0)  give  

dp  =  p2  + uu  + l/Joo  (10.18) 
dv  

where  
u  ==  ',,;lIm"mv  and  l/Joo  ==  ! R",II/" Ill.  (10.19)  

The  Einstein  field  equations  are  

R"v  - ! g"IIR  =  8rr  T"II  (10.20)  

where  T"v  is  the  energy-momentum  tensor.  Thus,  

l/Joo  =  4rrT"'II/"/II.  (10.21)  

The  local  energy  density  measured  by  an  observer  with  velocity  vector  vI'  is  
Tl'lIv"'vll  and  it  is  reasonable  to  assume  that  this  is  always  non-negative.  Then.  
from  continuity,  the  'weak  energy  condition'  

Tl'v  wl'w ll  :::  0  (10.22)  

follows  for  any  null  vector  w"'.  With  this  assumption.  (10.21)  shows that  l/Joo  :::  0  
and  then,  from  (10.18),  that  the  effect  of  the  matter  is  always  to  increase  the  
average  convergence,  i.e.  to  focus  the  null  geodesics.  
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For  a  general  discussion  of  what can  be  seen  from  infinity  and.  therefore,  of  
the  event  horizon,  we  need  to  determine  the  light  cone  structure  of spacetime.  For  
this  purpose,  it  is  useful  to  do  a  conformal  transformation  of the  metric  

g",,,  -+  Q2gll ,,·  (10.23)  

Such  a  transformation  leaves  the  light-cone  structure  unaffected  but  can  be  chosen  
so  as  to  compress  everything  near  infinity  and  bring  it  to  a  finite  distance.  For  
Minkowski  space,  the  line  element  is  

ds2  =  dt2  - dr2  - r2  dQ~. (10.24)  

In  light-cone  coordinates  u  ==  t  - r  and  v  ==  t  + r.  this  becomes  

ds2 = du  dv  - i(v  - u)2  dQ~. (10.25)  

Now  define  new  coordinates  p  and  q  such  that  tan  p  =  v  and  tan  q  =  u  with  
p-q  ~ O.  Then  

ds2  =  sec2  P  sec2  q[dpdq  - !  sin2(p  - q)  dQ~] (10.26)  

which  shows  that  the  Minkowski  metric  is  conformally  related  to  the  metric  
whose  line  element  dS2  is  in  the  square  brackets.  With  a  further  coordinate  
transformation  p  ==  t'  + r'.  q  ==  t'  - r'  the  line  element  becomes  

dS2 = dtf2  - drf2  - i  sin2(lr')  d~. (10.27)  

Thus,  Minkowski  space  is  conformal  to  the  region  bounded  by  the  null  surfaces  
Z+  ==  It'  + r'  =  '!r/2}  and  Z- ==  It'  - r'  =  -'!r/2}.  Z+  is  the  past  light  cone  
of  the  point;+  =  {r'  =  O.  t'  =  '!r  12}  and  Z- is  the  future  light  cone  of  the  
point;- = {r'  = O.  t'  = -'!r/2}.  All  timelike  geodesics  start  at;-.  representing  
past  timelike  infinity.  and  end  at  i+.  representing  future  timelike  infinity.  Null  
geodesics  start  at  some  point  on  the  surface  Z- and  end  at  some  point  on  Z+.  
We  are  interested  in  (black-hole)  spacetimes  that  are  asymptotically  flat.  This  
means  they  must  be  'like'  Minkowski  space  near  infinity.  and  so  should  have  a  
similar  conformal  structure  at  infinity.  In  fact,  the  conformal  metric  is.  in  general,  
singular  at  the  points  i  +  and  i-but regular  on  the  null  surfaces  Z+  and  Z-.  

Consider  the  set  J-(S)  consisting  of  a  set  S  of  spacetiJne  points  plus  all  
points  from  which  S  can  be  reached  by  future-directed  non-space like  curves.  The  
region  of spacetime  from  which  one  can  escape  to  infinity  along  a  future  directed  
non-spacelike  curve  is.  therefore.  J-(Z+).  the  causal  past  of  future  null  infinity.  
The  boundary  of this  region  j- (Z+)  is  the general definition  of the event horizon.  
It is  generated  by  null  geodesics  segments  which  may  have  past  endpoints  but  can  
have no futureendpoints.  Now. using the positivity  of 4>00. it follows from  (10.18)  
that  

dp  >  p2.  (10.28) 
dv  ­
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Suppose  that  the  convergence  p  of  neighbouring  generators  has  a  positive  value  
PO  >  0  at  some  point  q  on  a  generator  of  j-(I+).  then  p  increases  to  infinity  
within  a  finite  affine  distance  .6  v  ::::  1/ PO  to  the  future  of  q.  The  point  r  at  
which  p  becomes  infinite  is  a  focal  point  at  which  neighbouring  null  geodesics  
intersect.  In  other  words,  if  the  generators  of  j-(I+)  ever  start  converging.  
they  are  destined  to  have  future  endpoints  within  a  finite  affine  distance.  This  
contradicts  the  previously  stated  property  that  such  generators  have  no  future  
endpoints.  It  follows  [I]  that  p  ::::  0  everywhere  on  the  event  horizon  and.  
therefore.  from  (10.17).  that  the  area  of the  two-dimensional  cross  section  cannot  
decrease  with  time  I.  As  already  noted.  this  prompted  the  observation  that  this  
area  is  analogous  to  the  entropy  of  a  thermodynamic  system.  

10.3  Entropy of  black  holes   

In  fact.  the  area  of  the  two-dimensional  section  of  the  event  horizon  will  remain  
constant  only  if  the  black  hole  is  in  a  stationary  state.  If  the  black  hole  interacts  
with  anything  else  the  area  always  increases.  In  this  respect.  the  area  behaves  
similarly to the entropy  of a thermodynamic system.  In favourable circumstances.  
one  can  arrange  that  the  increase  in  area  can  be  made  arbitrarily  small.  which  
corresponds  to  nearly  reversible  transformations  in  thermodynamics.  

During  black-hole  formation  in  the  collapse  of  a  star.  the  metric  is  strongly  
time-dependent  and  a  complete  classification  of  all  solutions  has  not  been  
found.  However.  the  possible  final  stationary  states  have  been  identified.  An  
asymptotically  flat  metric  is  called  stationary  if  there  exists  a  Killing  vector2  k  
that  is  timelike  near  infinity  (where  it  may  be  normalized  such  that  k2  =  I).  In  
other  words.  outside  of  the  horizon  k  =  f,.  where  t  is  a  time  coordinate.  In  these  
coordinates.  the  general  stationary  metric  has  a  line  element  of the  form  

ds2  =  goo(x)  dt 2  +  2g0i(X)  dt  d,xi  +  gij (x)  d,xi  d,xi.  (10.29)  

A  stationary  metric  is  called  static  if  it  is  also  invariant  under  time-reversal.  at  
least  near  infinity.  Thus.  the  general  static  metric  has  gOi  =  0  and  the  line  element  
takes  the  form  

ds2  = goo(x)  dt2  +  gij (x)  d,xi  d,xj.  (10.30)  

I  It  would  be  possible  to  escape  this  conclusion  if  the  generators  were  prevented  from  reaching  the  
finite  affine  distance  to  the  endpoint  because  of an  intervening  singularity.  However,  Hawking  [5]  has  
shown,  using  the  general  requirements  of  asymptotic  predictability,  that  this  does  not  occur.  
2  A  general  coordinate  transformation  x  ~ x'  is  called  an  'isometry'  if  the  transformed  metric  
8~v(X') is  the  same  function  of  its  argument  x''''  a~ the  original  metric  8",v(X)  was  of  its  argument  x"'.  
TIle  generators  of  such  transformations  may  be  found  by  considering  an  infinitesimal  transformation  
in  which  x''''  =  x'"  +  £~'" with  £  «  1.  This  is  an  isometry  if  ~ satisfies  ~"';\I +  ~v;'" =  O.  and  
any  vector  satisfying  this  is  called  a  'Killing'  vector.  We  may  equivalently  write  the  Killing  vector  as  

~ =  ~jLJr. 



282  Black  holes  in  string  theory  

With  modest  assumptions  about  causality,  it  can  be  shown  that  the  only  static  
(single)  black-hole  solution  of  the  Einstein  field  equations  is  the  (spberically  
symmetric)  Schwarzchild  solution  given  in  (10.2).  

This  result  can  be  generalized  to  black  holes  with  electric  charge  Q  by  
solving  the  Einstein-Maxwell  equations.  They  are  derived  from  the  action  

SEM  =  .,  I ~ f d4x  (_g)1/2[R  - GNFJ",FJLI').  (10.31)  

where  F /LV  is  the  electromagnetic  field  strength.  Then  the  Einstein  field  equations  
(10.20)  have  the  energy-momentum  tensor  

1  (  y  I  y&) 
T/Lv  =  4",  Fp.  Flly  - "2 gp.vFy &F  •  (10.32)  

The  only  static  solution  is  the  Reissner-Nordstrom  (RN)  solution  with  line  
element  

2  2M  Q  2  2M  Q  2  2 2 
ds  = ( I - - + - 2)  dt  - ( I - - + - 2)-1  dr  -,  d02  (10.33) ,,2  ,,2  

and  gauge  potential  I-form  

A  ==  Ap.dxP.  =  Q ,  dt.  (10.34)  

Like  the  Schwarzchild  metric,  this  has  a  curvature  singularity  at,  =  O.  For  
M  >  I QI,  there  are  coordinate  (but  not  curvature)  singularities  at  ,  = ,  ±  ==  M  ±  
,1M2  - Q2.  This  assumes  that  M  ~ IQI,  since  otherwise  there  are  no  horizons  
and  the  curvature  singularity  at  ,  =  0  is  'naked'.  More  generally,  these  results  
can be extended to stationary black-hole solutions.  The stationary solutions  of the  
Einstein  equations  are  the  (axially-symmetric)  Kerr  solutions,  classified  by  two  
parameters,  the  mass  M  and  the  angular  momentum  J.  Generalizing  to  solutions  
of  the  Einstein-Maxwell  equations  leads  to  the  three-parameter  Kerr-Newman  
metrics:  

2  .  2  (J  ,2  + a2  - !J,. 
2  _  !J,.  - a  san  dt2  + 2a  sin2  (J  dt  dq, 

ds- 1:  1:  

(,2  + a 2)2  - !J,.a 2 sin2 (J  sin2 (J  dq,2  _  1:  dr2  _  1:  de2  (10.35)  
- !J,.  

where  

1:  ==  ,2  + a2  cos2 (J  and  !J,.  ==,2  _ 2M,  +a2+ Q2.  (10.36)  

The  three  parameters  are  M,  a  and  Q.  a  is  related  to  the  total  angular  momentum  
Jby  

J  
(10.37) a=  M'  
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If we  allow  magnetic  charge  P  as  well  as  the  electric  charge  Q,  we  replace  Q  by  

e  ==  JQ2+  p2.  (10.38)  

The  Maxwell  I-fonn  is  

Qr  .  2  P  cos(J  2  2 
A  =  -(dt  -aslO  (Jdcp)  - --[adt  - (r  +a  )dcp].  (10.39) 

1:  1:  

The  future  and  past  event  horizons  are  at  

r  =  r±  ==  M  ±  (M2  _  Q2  _  a 2)1/2  (10.40)  

so  that  the  future  event  horizon  has  area  AH  given  by  

AH  = 41l'[2M2  - Q2  +  2(M4  _  M2Q2  _  J2)1/2].  (10.41  )  

This  can  be  rewritten  as  

2  AH  41l'  J2  1l'Q4  Q2  
M  =-+--+-+-. (10.42) 

161l'  AH  AH  2  

The  first  tenn  on  the  right-hand  side  is  the  'irreducible'  part  of  M2  that  is  
irretrievably  lost  down  the  black  hole.  The  second  tenn  is  the  contribution  from  
the  rotational  energy  of  the  black  hole  and  the  third  and  fourth  tenns  arise  from  
the  electrostatic  energy.  The  mass  M,  as  opposed  to  M2,  can  also  be  written  in  an  
elegant  fonn  due  to  Smarr  [6]:  

M  = -KAH  
+20HJ  +  <l>HQ  (10.43) 

41l'  

Where,  on  the  future  event  horizon,  the  surface  gravity  (i.e.  the  acceleration  of  
a  static  particle  as  measured  at  spatial  infinity)  is  K,  the  angular  velocity  is  0  H  

and  the  co-rotating  electrostatic  potential  is  <I>  H;  all  of  these  are  constant  on  the  
horizon.  If such  a  black  hole  is  perturbed  and  settles  down  to  another  stationary  
black  hole  with  parameters  M  + dM,  J  + dJ  and  Q  + dQ,  then  (exercise  4)  

K  
dM  =  81l'  dAH  +  OH  dJ  +  <l>H  dQ.  (10.44)  

Comparing  this  with  the  thermodynamical  (first  law)  formula  

dU  =  T  dS  +  P d  V  + IL  dN  (10.45)  

we  see  that  if  some  multiple  of  the  area  AH  of  a  section  of  the  event  horizon  is  
analogous to entropy, then some  multiple  of the surface gravity  K  on  the  horizon  is  
analogous  to  the  temperature.  Bekenstein  [7]  suggested  that  these  are  not  merely  
analogues  but,  in  some  sense,  actually  are  the  entropy  and  temperature  of  the  
black  hole.  
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However,  if  the  black  hole  has  a  temperature,  it  should  radiate  a  black­
body  spectrum,  thereby  contradicting  the  defining  property  of  a  black  hole  that  
it  can  absorb  particles  or  radiation  but  not  emit  them.  Hawking's  resolution  of  
this  paradox  noted  that  this  absorption-only  property  is  a  feature  of  the  classical  
theory  of  gravitation.  He  showed  that  quantum  mechanical  effects  cause  black  
holes  to  create  and  emit  particles  as  if  they  were  hot  bodies  with  a  temperature  
Tbh  given  by  

K  
(10.46) Tbh  = 2rr·  

Then,  from  (10.44)  the  (Bekenstein-Hawking  formula  for  the)  entropy  Sbh  is  

Sbh  =  lAH.  (10.47)  

The  result  is  obtained  by  treating  the  spacetime  metric  classically  but  the  
matter  fields  to  which  it  is  coupled  are  treated  quantum  mechanically.  We  should  
expect  this  semi-classical  approximation  to  be  excellent  except  near  a  spacetime  
singularity.  In  flat  Minkowski  spacetime,  a  massless  real  scalar  field  tP,  for  
example,  satisfies  the  field  equation  ,,11011  tP:p.lI  =  ° and  tP  can  be  expanded  in  terms  

of annihilation  and  creation  operators  a;  and  a;  as  

tP  =  L(a;/;  +  a; It)  (10.48)  

where  the  {f;}  are  a  complete  orthonormal  set  of  positive-frequency  (complex)  
solutions  of  the  wave  equation  ,,11011  /;:11011  =  0:  the  positive  frequency  is  defined  
with  respect  to  the  usual  Minkowski  time  coordinate.  The  vacuum  10)  is  then  
defined  to  satisfy  

Vi.  (10.49) a;IO)  = °  
In  a  curved  spacetime  with  metric  gp.II,  the  field  equation  becomes  gp.II tP:p.II  =  °  
with  the  semi-colon  indicating  covariant  differentiation.  However,  in  general,  
positive  and  negative  frequencies  have  no  invariant  meaning  in  a  curved  spacetime  
and  the  expansion  of  tP  in  annihilation  and  creation  operators  is  not  defined.  In  a  
region  of spacetime  which  was  flat  or  asymptotically  flat  such  an  expansion  can  
be  made,  but  if  we  have  a  spacetime  with  an  initial  flat  region  (I),  followed  by  a  
region  of  curvature  (2),  and  then  another  flat  region  (3),  the  initial  vacuum  101)  
will  not  be  the  same  as  the  final  vacuum  103).  This  will  lead  to  the  interpretation  
that  the  time-dependent  metric  in  (2)  has  led  to  the  creation  of  a  number  of  
particles  of the  scalar  field  tP.  This is what happens in the  core  of a black hole [8],  
hidden from outside observers  by the event horizon.  When the radius  of curvature  
of spacetime  is  smaller than  the Compton wavelength  of a  given  species,  there is  
an  indeterminacy  in  the  particle  number,  that  is  to  say,  particle  creation.  Although  
these  effects  are  negligible  locally,  they  can  have  a  significant  influence  on  the  
black  hole  over  the  lifetime  of  the  universe.  
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The  most  elegant  derivation  of  the  quantum  result  utilizes  Feynman's  path­
integral  formulation  of quantum  field  theory  [9].  In  this,  the  generating  function  
W[J]  for  the  Green  functions  of the  quantum  field  theory  is  a  functional  integral  
over classical  fields  l/J  

W[J]  = f  Vl/Jexp{iS[l/J.  J]}  (10.50)  

where  

S[l/J.  J]  = f d4x  [C(l/J,  B/Ll/J)  +  Jl/J]  (10.51)  

is  the  action  integral  with  C  the  Lagrangian  density.  and  J  a  source  current.  
In  the  present  context.  the  functional  integral  is  over  both  matter  fields  l/J  and  
metrics  8/Lv.  The  latter  should  include  both  metrics  that  can  be  continuously  
deformed  to  the  flat  metric  as  well  as  homotopically  disconnected  metrics  such  
as  those  of  black  holes.  The  evaluation  of  the  action  integral  is  problematic  for  
black-hole  metrics  because  of the  spacetime  singularities  they  contain.  However,  
this  difficulty  can  be  surmounted  by  complexifying  the  metric  and  evaluating  the  
integral  over  a  contour  that  avoids  the  singularities  [10].  

As  an  example.  we  take  the  Schwarzchild  metric  (10.2)  which.  as  already  
noted.  has  a  coordinate  singularity  at  r  =  2M  and  a  curvature  singularity  at  
r  =  O.  The  former  can  be  removed  by  transforming  to  Kruskal  coordinates  in  
which  the line  element  has  the  form  

-r/2M  
ds2  =  32M3 e __ (dz2  _  dy2)  _  r2  dn~ (10.52) 

r  

where  

-Z2  + i  =  (2~ - I)  er/ 2M  (10.53)  

y  +z  = e,/2M.  (10.54) 
y  -z  

The  singularity  at  r  =  0  is  now  on  the  surface  Z2  - y2  =  1  but  it  can  be  avoided  
by  defining  a  new  coordinate  ~ =  iz.  Then  the  metric  has  the  Euclidean  form  

e-r/ 2M  
_ds2  =  32M3 __ (d~2 +di)  +r2dn~ (10.55) 

r  

where  now  

~2 +  y2  =  (2~ - I)  er/ 2M  (10.56)  

y  - i~ = e,/2M.  (10.57) 
y  +i~ 

Thus.  on  the  contour where  ~ and  y  are  real.  r  is  real  and  r  >  2M.  Further.  on  this  
contour  we  define  an  imaginary  time  t"  by  1"  = it  and  then  (10.57)  shows  that  t"  =  
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4M arg(y   + in is   an  angular coordinate   with  period fJ   ==  8:11' M.   The  functional  
integral  defining  the  generating  function  should.  therefore.  be  over matter   fields  
and  metrics with   this  periodicity in   1'.  But  this  is just  the 

= 
  partition 

= 
function   Z  for  

a canonical   ensemble  of  the  fields  at  temperature  T  {j-I  (811'  M)-I.  The  
surface  gravity  K  for  the  Schwarzchild  black  hole  is  K  =  (4M)-I,  so  that  the  
temperature  is  T  =  K/21I'  in  accordance  with  (10.46).  (For  the  generalization  
of this   result  to  the  Reissner-Nordstrom  black  hole,  see  exercise  7.)  With  this  
established.  it is   clear that  the   black hole   must  have the  entropy  given  by  (10.47).   
Nevertheless,  it is   an  interesting excercise  to  verify   this  directly by  evaluating  the   
action.  

In  order  to  obtain  a  finite  result,  it  is  necessary  not  only  to  compute  the  
(Euclidean)  action  by  integrating  over the   previous  imaginary  time  coordinate  l'  
but  also  over  a  finite  region  of space.   In  general.  for  a  finite  region  M  of 0­ 
dimensional  spacetime,  the  Einstein-Hilbert action   must  be supplemented   by  a  
contribution evaluated  on  the   boundary aM  which  allows variations of  the metric   
that  vanish  on  aM  but  which  might have   non-vanishing derivatives   normal  to  it.  
In  units where   G N  =  I, the   action can  be   written as   

S[g,  0]  =  I~:II' fM  .J=gR(g)dDx +  8~  laM HBdD-l~  (10.58)  

where hab   is  the  induced metric  on   aM  

ax" axil   
h b---g a - a~a a~b "I}  (10.59)  

~a are  D  - 1 coordinates  on   aM,  which  is  specified  by an   equation of  the   fonn  
I(x,,(~a» =  O.  Up  to  a  term  C  that  depends  only  on  the  induced  metric  hab,  
B  = K   + C  is just  the  trace   K  of the extrinsic  curvature  (the second  fundamental  
form)  Kab  of the   boundary aM:   

ax" axil   
Kab  =  a~a a~b"";1I (10.60) 

where  ""  is  the  unit outgoing   normal  to  aM  and  the  semi-colon  denotes  a  
covariantderivative.  Then  

""  = ±  II'"   al )..  al 1- 1 2 
/ al  (10.61) 

ax  axl}  ax'"  

For asymptotically   flat  metrics  in  D  = 4  dimensions,  where  aM can   be  chosen  
to  be the  product of  the  (imaginary) time  axis  with  a 2-sphere of  large radius  R,  it  
is natural  to  choose  the   constant C   so that  the  action  is   zero for  the   flat  Minkowski  
space metric   ",,1}'  Then  

B  = K(g)   - K(,,).  (10.62)  

Since  Ji(g)  = 0,  the action   for the   Schwarzchild  black hole   derives entirely  from   
the  surface  tenn in   (10.58).  In  the  case of  a  spherical surface,  I   (x)  ==  r - R  = 0  
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and  we  may  use  the  remaining  coordinates  for  the  ~a. Then  the  unit  outgoing  
normal  is  

1  r", I"  - -~Or (10.63) n  -~ 

and  
Kab  =  !nl"  agab  .  (l0.64) 

2  axl"  
For  the  Schwarzchild  metric  (10.2).  this  gives  (exercise  8)  

1/2 2R-3M  
and  (  2M)  R2  sin(J 

K(g)  =  R2(l  _  2M/ R)I/2  A  =  -i  I - If  (10.65)  

and  then  

f.M  H[K (g)  - K(q)) d'.  ~ -i4"P  [2R  - 3M  - 2R  (1  -2: f2].  
(10.66)  

Thus,  in  the  limit  R  -+  00,  the  Schwarzchild  action  is  

I.  ill' S[  0] 
g(S),  =  -lfJM  =  -M.  (10.67) 

2  K  

The  general  result  [ 10]  for  Kerr-Newman  metrics  g(K N)  of the  form  (10.35)  
is  that  the  action  integral  has  the  value  

iJr  
S[g(KN), O]  =  -(M  - <l>H  Q).  (10.68)  

K  

(The  rotation  does  not  affect  the  evaluation  of  the  action.)  The  dominant  
contribution  to  the  path  integral  (10.50)  comes  from  fields  (in  our  case  metrics  
g)  with  the  correct  periodicity  that  minimize  the  action.  Such  fields  are  solutions  
of  the  classical  equations  of  motion  and.  in  the  present  context.  are  the  Kerr­
Newman  metrics  g(KN).  Thus.  

In  W[O]  =  In  Z  ~ is[g(KN).  0].  (  10.69)  

In  a  thermodynamic  system,  the  partition  function  Z  for  a  grand  canonical  
ensemble  at  temperature  T =  fJ-1 with  chemical  potentials  IL;  associated  with  
conserved  charges  Ni  is  defined  as  

Z=Trexp [  -fJ(H- ~IL;N;)] (10.70)  
I  

and  its  logarithm  is  related  to  the  free  energy  F  by  

InZ  =  -fJF  =  -fJ( E  - TS  - ~lljNj), (10.71)  
I  
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For  the  case  we  are  considering  in  which  {J  =  211'  I/(,  this  gives  

211'  11'  
InZ  =  --(M  - TS  - <'PHQ  - OHJ)  =  --(M  - Q<'PH)  (10.72)  

K  K  

using  (10.68)  and  (10.69)  for  the  second  equation.  Thus  

!M  =  TS+  !<I»HQ  +  OHJ.  (10.73)  

From  Smarr's  formula  (10.43),  we  also  have  that  

I  K  I  
'2M  =  811'  AH  +  '2<1»HQ  + OHJ.  (10.74)  

Then,  comparing  the  two  expressions,  restoring  the  factors  of  Ii,  e,  GN  and  k8,  
and  using  

1ix  lie3  
T=--=---­

211'k8  811'GNMkB  

we  deduce  that  the  entropy  is  given  by  the  Bekenstein-Hawking  formula  

c3AH 
S=-- (10.75) 

4GNIi  

as  anticipated  in  (10.47).  
It  is  worthwhile  pausing  for  a  moment  to  reflect  upon  this  extraordinary  

result.  We  are  accustomed  to  extensive  quantities,  such  as  the  entropy  of  a  
thermodynamic  system,  being  proportional  to  the  volume  of the  system.  Yet  here  
the  entropy  is  scaling  as  the  surface  area.  The  result  generalizes  to  spacetimes  
with  dimension  D  as  

clAD  
(10.76) S  =  4GDIi  

where  AD  is  the  (D  - 2)-dimensional  'area'  of  the  event  horizon  and  GD  is  
the  D-dimensional  Newton  constant.  The  entropy  is  thus  essentially  the  horizon  
area  measured  in  Planck  units.  This  area  dependence  is  an  example  of  the  
'holographic'  principle,  and  suggests  that  the  fundamental  degrees  of  freedom  
describing  the  system  may  be  characterized  by  a  quantum  field  theory  with  one  
fewer  space  dimensions  and  with  an  ultraviolet  cut-off  at  the  Planck  scale  [11].  
We  shall  not  pursue  this  intriguing  suggestion  further.  

The  identification  of  the  Bekenstein-Hawking  entropy  with  the  physical  
entropy  of  the  black  hole  leads  to  two  important  puzzles.  The  first  is  the  so­
called  'information  problem'.  Hawking  [12]  showed  that  the  outgoing  radiation  
from  the  radiating black hole is purely thermal and depends only on  the conserved  
charges  coupled  to  long-range  fields.  This  clearly  entails  a  loss  of  information,  
since  two  different.  macroscopic  objects  having  the  same  mass,  a  graduate  student  
and  her  supervisor,  for  example,  falling  into  the  black  hole  would,  according  
to  an  observer  outside  of  the  horizon,  generate  the  same  Hawking  radiation.  
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String  theory provides a  unitary,  quantum theory  of gravity,  so  infonnation  cannot  
be  lost.  Thus,  the  infonnation  loss  entailed  in  Hawking's  derivation  must  be  
an  artefact  of  the  semi-classical  approximation  used.  However,  it  is  not  clear  
precisely  where  or  how  the  approximation  does  breakdown  nor,  if  it  does,  how  
the  infonnation  is  returned.  We  shall  not  pursue  this  topic  further  either.  Instead,  
we  turn  to  the  second  puzzle  thrown  up  by  the  Bekenstein-Hawking  result  and  
the  one  on  which  string  theory  has  been  able  to  shed  some  light,  namely  whether  
there is an explanation  of black-hole entropy  in  tenns of microstates.  

10.4  Perturbative  microstates  in  string theory   

Thermodynamics  is  only  an  approximation  to  a  more  fundamental  description  
based  on  the  statistical  properties  of  the  microstates  of  the  system.  So  the  
fact  that  black  holes  have  entropy  suggests  that  this  too  should  be  understood  
microscopically.  Roughly  speaking,  a  thermodynamic  system  with  entropy  S  is  
associated with a number eS of microstates of the system.  For the Schwarzchild  
black  hole,  with  a  horizon  area  given  by  (10.8),  we  see  from  (10.75)  that  the  
entropy  is  Sbh  =  4rrG N  M2 loc.  For  the  moment,  the  only  important  feature  is  
that the associated number  of states grows like eM2 •  We might have hoped that  
this  approximates  the  number  of perturbative  string  states  with  mass  M.  However,  
this  is  not  the  case,  as  we  shall  now  demonstrate.  

It  suffices  to  consider  the  open  bosonic  string.  This  has  mode  expansion  [13]  

X/L  =  xiL  + I:  p/L T  + its  L  !at:  cos(nu)  (10.77)  
n#)  n  

where  the  oscillator  coefficients  at:  are  creation  (annihilation)  operators  for  
n  <  0  (n  >  0).  In  units  where  the  string  length  scale  Is  = I/..!i?i  is  1  (T  is  
the  string  tension),  the  mass  eigenvalues  are  given  by  the  eigenvalues  of  

!M2  =  N-I  (10.78)  

where  
00  

"i  i  (10.79) N  =  ~a_nan 
n=1  

is  the  number  operator;  the  sum  over  i  is  over  the  DT  =  24  transverse  dimensions  
of  the  bosonic  string.  We  wish  to  estimate  the  number  of  (degenerate)  states  dn  
that  have  number-eigenvalue  n.  It  is  convenient  to  define  a  generating  function  

00  

G(w)  = trwN  = Ldnwn  (10.80)  
n=O  



290  Black  holes  in  string  theory  

with  Iwl  <  I.  Now  

00  n 00   

trwN  =  
111=1 

n trWcr'_cr~ =  ( 

 111=1  

 I  )24 
1 _  wm  (10.81)  

The function   
00  

/(w)  ==  n (I  - Will)  (10.82)  
111=1  

can  be written   as  follows:  

00  P  
In/(w) =  ~In(l-wlll)  = -

00  IIIp  00  

~ ~ = - ~ w  .  (10.83)  
~ ~ p  ~ p(l - wP)  
111=)  lII,p=)  P=)  

When  w  - I,  we  can expand  w P  ~ 1+ p(w  - I)  +  ... , so   we  can approximate   
In/(w) by   

In  /(w) ~  --=-!-.  ~ p-2 =   -~ (10.84) I-w ~  -­
P=)  

Thus,  

411'2  ) 
G(w)  - exp  (  I _   w  when  w - I.  (10.85)  

The required  degeneracy  d,.   may be  obtained  from   G(w) by  performing  a  contour   
integral  

d,.  = _1_   1.  G(w)  (10.86) 21ri  JC  w,.+1  dw  

where C  is a  closed  loop  around   w  =  O.  The integrand  vanishes  rapidly  as   w  -+  I  
and,  when  n  is  large,  w"+)  is  small  near  w  = O.   Thus,  for  large  n,  there  is  a  
saddle point  near  w   =  I. In  fact,   the  integrand is  stationary   when  

I-w-- .In+1 2rr  ~ -Inw.  (10.87)  

It follows  that   
d,.  ex  exp( 411' viii)  as  n  -+ 00.   (10.88)  

As  a  function  of  the  mass  M  given  in  (10.78).  the  number  of  states  p(M),  
therefore. increases  as   

p(M) ex   exp(v'21rM)  (10.89)  

quite inadequate  for  the   black-hole entropy  requirement  that   the  number of  states  
increases as   

Pbh(M)  ex  exp(4rrGNM2).  (10.90)  
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Nevertheless,  using  a  similar  treatment,  we  shall  see  later  that  string  theory  can  
account  for  the  entropy  but  the  associated  microstates  are  non-perturbative.  Even  
then,  the  accounting  has  so  far  only  been  successful  for  certain  special  types  of  
black  hole  called  'extreme'  black  holes.  We  therefore  first  describe  the  features  of  
extreme  black  holes  that  are  important  for  understanding  the  microscopic  origin  
of  their  entropy.  

10.5  Extreme black  holes   

It  might,  in  any  case,  be  objected  that  associating  perturbative  string  states  with  
black  holes  is  absurd.  The  former  are  obtained  by  quantizing  the  string  in  
a  flat  background  spacetime.  How  could  they  be  equivalent  to  a  black  hole?  
Nevertheless,  certain  perturbative  states  can  be  associated  with  'extreme'  black  
holes.  We  have  already  noted  the  constraint  M  ~ IQI  for  the  Reissner­
Nordstrom  (RN)  metrics  (10.33).  Metrics  saturating  this  constraint  are  called  
'extreme'  (RN)  black  holes.  The  usual  (supersymmetric)  perturbative  states  in  
string  theory  satisfy  M  ~ I Q\  and  states  saturating  this  inequality  are  called  'BPS  
states'  after  Bogomolnyi  [14]  and  Prasad  and  Sommerfield  [15].  They  have  the  
crucial  property  that  their  mass  cannot  receive  quantum  corrections  and  it  is  this  
that  allows  their  association  with  extreme  black  holes.  As  the  string  coupling  
strength  gs  increases,  the  mass  M  of  the  perturbative  state  is  unaltered,  since  
it  is  independent  of  gs  classically.  and  because  of  supersymmetry,  there  are  no  
quantum corrections.  However, the gravitational field  of the state is determined by  
G N  M  (in  four  dimensions)  and  G N  is  proportional  to  g;.  Thus,  as  Cs  increases,  
the  gravitational  field  increases,  there  is  a  back  reaction  on  the  perturbative  state  
and,  eventually,  it  may  be  described  by  a  curved  spacetime  with  large  curvature.  
Thus,  in  principle  at  least,  it  might  be  possible  to  associate  extreme  black-hole  
spacetimes  with  perturbative  states.  

The  RN  black  hole  looks  like  a  natural  starting  place  in  the  search  for  black  
holes  in  string  theory.  We  can  think  of the  Einstein-Maxwell  action  (10.31)  as  the  
bosonic part  of the.N = 2 supergravity theory in four dimensions.  The (massless)  
gravity  supermultiplet  contains  the  graviton,  two  (fermionic)  gravitinos  and  a  
vector  boson  called  the  'graviphoton'.  The  supersymmetry  algebra  is  [13]  

{Q:,  QBP}  =  28:a:pPIl  

{Q:,  Q:}  =  2£a(JZAB  (10.91)  

where  Q:,  with  a  =  I,  2  a  (Weyl)  spinor  index  and  A  =  I,  2,  are  the  
two  supersymmetry  generators;  the  Qs  are  defined  by  QAa  ==  (Q:)t;  the  
2  x  2  matrices  all  with  IL  =  0,  1,2,3  are  defined  by  all  =  (h.  ail,  with  
a;  (i  =  1,2,3)  the  standard  Pauli  matrices;  £afj  and  the  'central  charge'  ZAB  

are  anti symmetric  with  £12  =  +1  and  Zl2  ==  Z  and,  without  loss  of  generality,  
we  may  choose  Z  ~ O.  (The  graviphoton  is  a  U(l>  gauge  boson  coupled  to  a  
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charge  which  is,  in  fact,  the  central  charge.)  For  massive  representations,  we  may  
work  in  the  rest  frame  where  P,.,.  =  (M,  0).  Then  it  is  easy  to  see  (exercise  9)  that  
we  may  form  two  linear  combinations  tla  and  ba  of the  generators  that  satisfy  

{aa,  al}  =  4(M  +  Z)da~ 
{ba,  b~} =  4(M  - Z)da~ 

{CIa,  b;}  = 0  = {CIa.  bfi}  (10.92)  

Up  to  a  normalization  factor,  these  are  just  the  anticommutation  relations  obeyed  
by  two  independent  sets  of  fermion  annihilation  and  creation  operators.  In  
general,  starting  with  a  state  It}  that  is  annihilated  by  aa  and  ba,  we  can  
construct  a  total  of  16  states  using  the  creation  operators  a!  and  b!.  Since  
(</>  I{aa  , a!) I</>}  ~ 0  for  any  state  I</>}  and,  similarly,  for  ba,  the  'BPS  bound'  

M  ~ IZI  (10.93)  

follows.  The  inequality  is  saturated  by  representations  (BPS  states)  for  which  It}  
is  also  annihilated by one  set  of creation operators  (b!  if Z  >  0).  Thus,  such  states  
are  'short'  massive  representations  of  the  supersymmetry  algebra.  since  they  are  
constructed  using  only  the  a;  creation  operators.  They  are  invariant  under  half  of  
the  supersymmetry  algebra.  

The  extreme  RN  black  hole,  obtained  from  (10.33)  and  (10.34)  by  setting  
M  = Q.  is  part of such a short hypermultiplet [16].  In this case, the two horizons  
are  both  at  r  =  M  =  Q  and,  defining  p  ==  r  - Q,  we  may  write  the  solution  in  the  
'isotropic"  form  in  which  the  spatial  part  of the  metric  is  conformal  to  flat  space:  

ds2  = H-2 dt2  - H2(dp2  + p2  dn~) (10.94)  

A  =  (I  - H-1)dr  (10.95)  

where  
Q 

H  ==  1 + -.  (10.96) 
P  

Both  the  temporal  and  spatial  'warp'  factors  (the  factors  multiplying  the  two  
parts  of  the  metric),  as  well  as  the  electromagnetic  vector-potential  I-form,  are  
detennined  by  a  single  (harmonic)  function  H.  Extreme  solutions  have  the  
important  property  that  they  are  easily  generalized  to  a  case  representing  N  
extreme  black  holes  with  charges  qi  =  mi  (with  i  =  1,  2,  ... ,  N)  by  replacing  
the  function  H  given  in  (10.96)  by  

N  

H=l+"~ .  (10.97)  
~ Ir  -rll 1=1  

By  Gauss'  law,  the  total  charge  is  Q  = 1:;:'1  qi  which.  by  the  BPS  bound,  is  also  
the  total  mass  

N  N  

M=L~=L~=~ (10.98)  
1=1  1=1  
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There  is.  thus.  no  binding  energy  between  the  individual  black  holes:  the  
gravitational  binding  is  precisely  cancelled  by  the  electrostatic  repulsion.  Near  
the  horizon  Ipl  «  Q,  the  metric  is  approximated  by  AdS2  x  S2  (exercise  11).  
Thus,  the  extreme  black  hole  may  also  be  regarded  as  a  soli ton  that  interpolates  
between  the  Minkowski  vacuum  when  p  »  Q  and  AdS2  x  S2  when  Ipl  «  Q.  
Generalizations of this special form.  involving extra dimensions. extended objects  
and  other  charges,  are  important  in  what  follows.  

In  particular,  the  simplest  example  of  a  string-theory  black  hole  for  which  a  
microscopic  description can  be  found  is  provided  by  a  five-dimensional  analogue  
of  the  RN  solution  (10.33)  and  (10.34).  The  static,  solution  of  the  five­
dimensional Einstein-Maxwell equations outside  of a  (S3)-spherically symmetric  
body  of  mass  M  and  charge  Q  is  

2  2M  Q  2  2M  Q  2  2 2 
ds  = ( I - - + - 2)  dt  - ( I - - + - 2)-1  dr  - r  dS'23  (10.99) 

r2  r4  r2  r4  

and  the  gauge  potential  I-form  

Q  
A  = l'dt. (10.100) 

r  

(The  ,-2  dependence  of  the  potential  arises.  of  course.  because  there  are  now  
four  spatial  dimensions.)  As  before.  the  extreme  case  where  M  =  Q.  with  the  
horizon  at  r  =  ../Q.  may  be  cast  in  an  isotropic  form  by  using  the  coordinate  

p  ==  ./r2  - Q.  Then  the  horizon  is  at  p  =  0  and  

ds2  = H-2 dt2  - H(dp2  +  p2dO~) (10.101)  

A  =  (I  - H-1)dl  (10.102)  

where  now  the  harmonic  function  is  

H=  I+.fl. (10.103) 
p 2 .  

To  connect  this  black  hole  with  string  theory.  we  need  to  consider  the  
effective  field  theory  describing  string  theory  in  the  low-energy  limit.  This  is  
a  generalization  of  Einstein-Maxwell  theory  both  with  respect  to  the  number  of  
spacetime  dimensions  (ten)  and  the  fields  involved.  The  fields  involved  are  just  
the  massless  modes  that  arise  in  (perturbative)  string  theory  and  the  field  theory  
that  desribes  them  is  type  II  supergravity.  

10.6  Type  11  supergravity  

The  massless  states  that  arise  in  superstring  theory  include  both  bosons  and  
fermions.  Black  holes  are,  of  course.  solutions  of  the  classical  bosonic  field  
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equations,  so  we  shall  only  be  concerned  with  the  bosonic  degrees  of  freedom.  
All  closed  superstring  theories  have  massless  (bosonic)  modes  associated  with  the  
graviton  field  G JLV  (a  symmetric,  traceless,  rank-2  tensor),  the  Kalb-Ramond  field  
BI-'v  (an  anti symmetric,  rank-2  tensor)  and  the  dilaton  field",.  (The  expectation  
value  of  the  dilaton  fixes  the  string  coupling  constant  gs  via  gs  =  (e.).)  In  
type  11  superstring  theories,  these  states  arise  in  the  NS-NS  sector,  i.e.  they  
are  states  which  are  constructed  using  the  Neveu-Schwarz  (half-integer-moded)  
world-sheet  fermion  creation  operators  for  both  left- and  right-movers.  Massless  
bosonic  states  also  arise  in  the  R-R  sector:  these  are  constructed  using  the  
Ramond  (integer-moded)  world-sheet  fermion  creation  operators  for  both  left­
and  right-movers.  In  type  IIA  (in  the  light-cone  gauge),  the  R-R  states  transform  
as  [I]  =  8v  and  [3]  =  56  representations  of  the  (transverse)  SO(8)  group,  
where  [n]  denotes  the  totally  anti symmetric  rank  n  tensor.  They  may,  therefore,  
conveniently  be  represented  by  form  fields  C(l)  and  C(3)  where  

1  
C(n)  ==  ,C"'IJL2 ••• /L ..  dx"'l  "dx1-'2  "  ...  "dx/LII.  (10.104) 

n.  

The  representations  [n]  and  [8  - n]  of  SO(8)  are  the  same,  since  they  related  
by  the  eight-dimensional  f-tensor,  so  we  could  as  well  represent  these  fields  by  
the  forms  C(7)  and  qS)  respectively.  The  tree-level  Weyl  invariance  of the  string  
world-sheet  action  is  preserved  in  the  quantum  string  theory  provided  that  the  
(renormalization-group)beta functions  associated  with  these  fields  all  vanish.  The  
resulting  equations  amount  to  spacetime  field  equations  for  the  background  fields  
that  would  arise  from  the  effective  action:  

SUA  = 	 ~{/dIOX(-G)I/2e-24tR(G)

2KIO 
 

+ /  [e-24t(4dtj>"  *dtIJ  - !H(3)"  * B(3)  - !F(2)  "  •  F(2)  

I - - 1 	 } 
- ~F(4) "  •  F(4)  - ~B(2) "  F(4)  "  F(4)]  

(10.105)  

where  G  ==  det[Gl-'v],  
2K2 

10  
-
-

(2;rr)7 a'4gs 2  (10.106)  

is  related  to  the  ten-dimensional  Newton  constant  by  2K?0  =  16;rrGIO;  a'  is  
related  to  the  string  tension  T  by  a'  =  ~ =  !/~ (where  Is  is  the  string  length  
scale);  the  dilaton  I-form  is  dtj>  ==  BJLt/J  dx/L,  and  the  field-strength  forms  are  
related  to  the  potentials  by  

H(3)  = dB(2)  F(2)  = dC(l)  F(4)  =  dC(3)  

F(4)  =  F(4)  +  C(l)  "  H(3)  (10.107)  



TYpe  II supergravity  295  

B(2)  is  the  2-form  associated  with  the  Kalb-Ramond  field  and  the  (1
dimensional) Hodge  dual   '"C(p)  is  

(-0)1/2 
*C  - L  C"I"2 ... "p dx'"   A  dx"2  A  A  dx"lO-p 

(p)  =  p!(1O  _  p)!""I"2"'''IO-plllll2 ...  Ilp  ...

(10.10
It  is  important  to  bear  in  mind  that  the  effective  action  (10.105)  is  a
approximation  that is   good  in  the  low-energy  limit a'   ~ O.  Higher-order term 
in  the  curvature  are  negligible  provided  JR.(G)a'  «  1.  Roughly  speaking,  w
may  say  that  the  metric  obtained  by  solving  the  lowest-order  field  equations  i
only  well  defined  on  length  scales  I  »  I,.  Note  that  all  terms  from  the  N
NS  sector  are  mUltiplied  by  e-'2t/I  ,  while  terms  from  the  R-R  sector  are  n
coupled to   the  dilaton.  This  is  a  feature  of the  'string frame'   in  which  the  actio
(10.105)  is  written.  To  remove  the  dilaton  factor  from  the  curvature  term,  as  i
the  conventional  'Einstein frame'   in  which we   have  worked  hitherto,  we perfor 
the  following  field  redefinition  

G  - ~/2 (10.10Il"  - e  gll'"  

Then the  effective  bosonic  action   in  the  Einstein frame   is  

SUA  = --;-{j dlOx (_g)I/2JR.(g)   - ~ j[dt/>  A  *dt/>  + e-~ !H(3)  A  * H(3) 
2"10  2  

+ e3~/2F(2)  A  * F(2)  + e~/2 F(4)  A  * F(4)  + B(2)   A  F(4)  A  F(4)')}  

(10.11

lYpe  11  string  theory  has.N  =  2  supersymmetry aa,  which.   in  10  dimension
is  realized  by two  Majorana-Weyl  spinors   Qa  and  each having  have   16  re
components, so  

a 
 there is  a   total  of 32 supersymmetry  charges;   Q  acts on   the  righ

movers,  and  on  the  left-movers.  In  type  HA  theory,  the  two  spinors  ha
opposite  chirality.  while  type  liB  both  spinors  have  the  same  chirality.  Thu
type liB   is  a  chiral theory  and   type  HA  non-chiral.  The R-R  states   in  type  liB  ar
also  represented  by form   fields  but  now  with  components transforming   as  eve
ranked  tensors  C(O).  C(2)  and  C(4)-the only   subtlety  is  that  the  [4)+  = 3S   
SO (8)  is  self-dual.  Analogous  forms  of the   actions  (10.105)  and  (10.1  10)  ma
also  be  written  in  terms  of the   field  strengths  F(I),  F(3)  and  F(5)  derived  fro
these  R-R sector  fields.   Otherwise,  the  structure  of the   two  forms  of the   actio
is  very  similar  to  the  type  IIA  case  and  we  shall  not  reproduce  them  here.  T
self-duality  constraint (of  the   5-form field   strength)  must  be  applied  as  an  ext
condition  on  the  solution  of the   field  equations.  The  important  point  is  that  
may  consistently  truncate  the  type  HA  and  type  lIB  effective  actions  to  inclu
only  the  graviton.  dilaton  plus  one  field-strength  tensor  F(n)  (or  H(3).  This 
non-trivial because  it  must   be verified   that  the  (local) supersymmetry  variation   
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the  (zero)  fermion  fields  is  constantly  zero.  In  the  Einstein  frame.  this  gives  an  
action  of the  form  

S,.  =  2:~o { f  dlOx  (-g)1/2R(g)  - ~f [d4>"  *d4>  + e-a,  F(II)  "  * F(II)] }.   

(10.111)  
The  value  of a   determines  the  coupling  to  the  dilaton  and  may  be  read  off from   
the  type  IIA  or  liB  action.  If  the  chosen  field  strength  is  H(3)  deriving  from  
the  NS-NS  form  B(2).  then  a  =  1,  whereas  if the   chosen  field  strength  derives  
from  an  R-R  field,  then  a  =  (n  - 5)/2.  In  the  latter  case.  n  =  2,4 •...  
corresponds to   type  HA.  and n   = I.   3,5, ...  corresponds to  type   lIB.  The fact   that  
the  type  11  string  theory  effective  action  (10.110)  involves  various  field  strengths  
F(II)  suggests  that  there  should  be  some  objects  in  the  underlying  string  theory  
that  couple  directly  to  the  associated  gauge  form  fields,  just  as  an  electron  is  
coupled  by  its  charge  to  the  Maxwell  gauge  potential  A".  We  shall  see  in  the  
next  section  that these   objects are   extended objects,   p-branes. generally   having  p  
spatial  dimensions.  

10.7  Form fields   and D-branes   

There  is  a  geometric  aspect  of the   antisymmetric  forms  which  gives  important  
in sights.  A  gauge  field  A"  is  coupled  naturally  to  the  world  line  X"(t')  of a   
charged particle  by   a  term  in  the  action  of the   form  

dX"  
5  '" f  A"  d;"' dt'.  (10.112)  

Under a  (U  ( I»  gauge  transformation. the   vector potential   I-form  

A" dx"   ==  A(l)  -. A(I)   + dA(o)  (10.113)  

where  A(o)  is  a O-form,   i.e.  a  function.  The  field  strength  2-form  F(2)  =  dA(I)  is  
gauge  invariant and   satisfies  

dF(2)  = 0  (10.114)  

which  in  four dimensions   are  two  of Maxwell's equations.   The  other two   are  

d *  F(2)  = *  J(I)  (10.115)  

where  J(I)  ==  J"  dx" is   the  current  I-form.  * F(2)  and  * J(l)  are  the  Hodge  duals.  
They are   defined  in  ten  dimensions in   (10.108) but  have   an  obvious generalization   
to  any  dimensionality.  In  four  dimensions.  *J(l)  is  a  3-form.  and  we  may  use  
Gauss'  theorem  to  find  the  electric  charge  Q  in  some  spatial  volume  V3  enclosed  
by  a surface   52:  

Q =   (  * J(l)  =  (  * F.  (10.116) 
)V3  )S2  
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The  string  world-sheet  XIJ.("C,  0')  has  an  analogous  coupling  to  the  Kalb-Ramond  
field  BIJ.II:  

s  .....  f BIJ.IIEa~BaXIJ.B~XII d2~ (10.117)  

where  ~O.l are  the  two  world-sheet  coordinates  ("C,O')  respectively,  Ea~ is  the  
antisymmetric  tensor  with  EOI  =  -E 10  =  -I.  The  gauge  transformation  

B(2)  -+  B(2)  + dA(1)  (10.118)  

leaves  the  3-form  field  strength  H(3)  =  dB(2)  invariant  and,  analogously  to  
(10.114),  

dH(3)  =  0  (10.119)  

Evidently,  the  string,  and  (some  of)  its  excitations,  have  a  non-zero  value  
of  the  NS-NS  'electric'  charge  associated  with  the  BIJ.II  gauge  field.  The  
generalization  of  (10.116)  is  that  the  electric  charge  Q I  of  the  (one-dimensional)  
string,  associated  with  the  2-form  gauge  potential  that  is  enclosed  by  the  seven­
dimensional  hypersurface  S7,  is  given  by  

Q\  = (  ·H(3).  (10.120) 
157  

For  a  general  anti symmetric  (p  +  I  )-dimensional  tensor  gauge  field,  the  
generalization of (10.112) and  (10.117) is  a  term  in  the  action  of the  form  

S"'"  f CIJ.Io1J.2  .... Jl.p+IEaoal  ... apBaoXIJ.1BaIXIJ.2  ... BapXIJ.P+1  dP+\~. (10.121)  

This  describes  the  coupling  of  the  C(p+1)  form  gauge  field  to  the  (p  +  1)­
dimensional  world  volume  of  an  extended  object  having  p  spatial  dimensions  
(a  p-brane)  that  has  a  non-zero  value  for  the  NS-NS  or  R-R  electric  charge  
associated  with  the  NS-NS  or  R-R  sector  gauge  form  fields  described  in  the  
previous  section.  Under  a  gauge  transformation,  a  gauge  form  field  transforms  
as  

C(p+l)  -+  C(p+l)  + dA(p)  (10.122)  

and  the  field  strength  F(p+2)  =  dC(p+1)  is  invariant.  The  electric  charge  of  the  
p-brane  associated  with  the  gauge  potential,  that  is  enclosed  by  the  hypersurface  
S8-p  is,  therefore,  generally  given  by  

(10.123) Qp  =  Is  · F(p+2).  
58-p  

In  addition  to  the  field  strength  H(3)  deriving  from  the  Kalb-Ramond  NS­
NS  form  field  B(2),  which  we  have  already  noted  is  coupled  'electrically'  to  
the  string  world  sheet,  the  effective  action  for  type  HA  superstrings  (10.105)  
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or  (10.110)  also  involves  the  field  strengths  F(n)  (with  n  even)  that  derive  from  
the  R-R  fields  C(II-l)'  However,  unlike  the  NS-NS  field  B(2),  these  fields  are  
not  coupled  electrically  to  the  string  world  sheet  or  its  excitations.  In  fact,  the  
vertex  operator  for  the  emission  of an  R-R  state  involves  the  corresponding  field  
strength  rather  than  the  gauge  field.  It  therefore  vanishes  at  zero  momentum  and,  
in  consequence,  the  pertubative  string  states  are  electrically  neutral  with  respect  
to  the  charge  associated  with  the  R-R  gauge  fields.  The  foregoing  discussion  
suggests  that  the  R-R  field  strengths  F(II)  are  naturally  associated  with  branes  
baving  p  = n  - 2  dimensions.  Thus,  type  HA  superstring theory  is  also  associated  
with  O-branes  (i.e.  point  particles),  2-branes  (membranes)  and  4-branes  baving  
non-zero  values  of  the  associated  R-R  charges.  Similarly,  type  lIB  superstring  
theory  is  associated  with  I-branes  (R-R  strings),  3-branes  and  5-branes.  Since  
the  perturbative  string  states  are  neutral  with  respect  to  the  charges  associated  
with  the  R-R  fields,  type  11  (A  or  B)  string  theory  has  to  be  augmented  with  
non-perturbative  dynamical  objects  (p-branes)  that  do  have  R-R  charges,  i.e.  
electric  charges  associated  with  the  R-R  gauge  form  fields.  The  branes  are  called  
'Dirichlet  p-branes'  or  'Dp-branes',  because  besides  the  closed-string  sector,  
there  has  to  be  an  open-string  sector  in  which  the  open  string  ends  on  these  
p-dimensional  hyperplanes  [17,  18].  Hence,  the  open-string  world  sheet  has  
Dirichlet  boundary  conditions  in  the  directions  perpendicular  to  the  branes.  It  
turns  out  that  these  Dp-branes  do  couple  electrically  to  the  associated  (closed­
string)  R-R  fields,  just  as  the  fundamental  string  is  coupled  electrically  to  the  
NS-NS  Kalb-Ramond  field  B,.,.I)'  (More  precisely,  D-branes  act  as  a  source  for  
the  associated  R-R  gauge  fields.)  It  is  this  enlargement  of  (the  theory  formerly  
known as)  string theory that has led  to the  understanding  of black -hole entropy in  
terms of the associated microstates.  We now turn to the construction of the explicit  
black-hole solutions  of the type  11 supergravity field equations whose entropy we  
shall  eventually  be  able  to  explain  in  terms  of Dp-branes.  

10.8  Black  holes  in string  theory   

As  we  have  just  noted,  besides  fluctuations  of  the  string,  string  theory  also  
has  various  non-perturbative  soli tons.  These  are  static,  finite-energy  solutions  
of  the  classical  field  equations,  just  as  RN  black  holes  are  static  finite-energy  
solutions  of  the  classical  Einstein-MaxweU  field  equations.  It  follows  from  the  
previous  discussion  that  a  ('black  brane')  solution  of the  field  equations  deriving  
from  the  action  (l0. I  11)  for  g,.,.I),  with  non-zero  F(n),  will  give  the  gravitational  
field  associated  with  an  (n  - 2)-brane  having  the  associated  NS-NS  or  R-R  
charge.  The  field  equations  may  be  simplified  by  looking  for  solutions  that  have  
Poincare  invariance  in  the  p  + I  =  n  - I  dimensions  associated  with  the  p-brane  
world  volume  and  rotational  invariance  in  the  remaining  transverse  directions.  
The  coordinates  x""  are,  therefore,  split  into longitudinal  ones,  denoted  x G  with  
a  =  0,  1,  ... ,  p,  and  transverse  ones,  denoted  yi  with;  =  (p  +  I),  ... ,9.  The  
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metric is then assumed  to have the  'warped' form reminiscent  of that encountered  
earlier  in  (l 0.94)  and  (l 0.1  0 I  ):  

ds2  =  e2A(r)"ab  dxa  dxb  _  e2B(r)~ij dyi  dyj  (10.124)  

where  A  and  B  are  functions  of  the  radial  coordinate  r  =  J yi yi.  When  the  p  
spatial  dimensions  x  I,  ...  ,xP  are  compactified  the  metric  could  then  describe  a  
higher-dimensional  black  hole.  For  the  dilaton,  the  ansatz  is  

t/J  =  f(r)  (10.125)  

and,  for  the  anti symmetric  tensor,  the  assumption  is  

COI2 ... p  = eC(r)  - I.  (10.126)  

Then  it  turns  out  [19]  that  the  classical  field  equations  following  from  (10.111)  
have a solution  in  which all  of the  functions  A,  B,  c.  f  are  determined  by  a  single  
harmonic  function  H(r):  

ds2  =  Hp(r)-(7-P)/8"ab  dxa dxb  - Hp(r)(P+1)/88;j  dyi  dyj  (10.127) 

e.  =  Hp(r)(3-p)/4  (10.128)  

C(p+1)  =  [Hp(r)-I  - l]dx°  "dx l  ...  "  dxP  (10.129)  

with  
7-p Lp  

Hp(r)  =  1+  r 7-p'  (10.130)  

The  length  Lp  is  defined  by  

L~-P ==  2KIO../iiqp  (21r#)3-p  (10.131) 
(7  - p)n8-p  

where  q p  is  an  integer  and  

21r(1I+1)/2  
( 10.132)  nil  =  -n-(n-+-I}-/2)  

is  the  volume  of  the  unit  n-sphere  S".  Using  (10.109),  the  line  element  in  the  
string  frame  is  

ds2  =  Hp(r)-1/2TJabdxQ  dxb  - Hp(r)I/28;j  dyi  dyj  (10.133)  

with  all  other  fields  unaltered.  In  fact,  these  solutions  are  extreme  solitons.  As  in  
the  case  of the  four-and  five-dimensional  black-hole  solutions  (10.33)  and  (10.99),  
the  mass  Mp  can  be  read  off  from  the  warp  factor  Hp(r).  It  is  the  coefficient  of  
2K~o/(7 - p)ns-p  that  plays  the  role  of  Newton's  constant  in  this  case.  Thus,  

J1i  (  )3-P  21r  (  )-(I+P) 
Mp  = qp- 21rN  =  qp- 21rN  .  (lO.134)  

KIO  gs  
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As  expected  of  D p-branes,  the  solitons  we  have  found  are  non-perturbative  
objects  whose  mass  diverges  as  gs  -+  O.  However,  the  fact  that  the  mass  scales  as  
g; I  rather  than  8;2  shows  that  they  are  unconventional  solitons,  quite  unlike  the  
sphalerons  whose  action  is  given  in  (4.172),  for  example.  The  electric  charge  Q p  

associated  with  the  C(p+l)  form  gauge  potential  is  given  in  (10.123):  

1  1.  ~(  r;)3-P 
Qp  = -2  F(p+2)  = qp- 2if'Va'  .  (10.135) 

2K10  Ss-p  KIO  

Thus,  the  soli tons  have  qp  units  of  the  fundamental  Dp-brane  R-R  'electric'  
charge  IIp  ==  (21r)-P(a')-(p+I)/2/8s '  Further,  Mp  =  Qp,  so,  as  claimed,  these  
are  extreme  states.  There  is  an  exact  cancellation  between  the  attractive  forces  
from  NS-NS  fields  due  to  the  mass  of the  soliton  and  the  repulsive  Coulomb like  
electrical  forces  from  the  R-R  fields  due  to  its  charge.  As  in  the  four-dimensional  
case,  this signals the  fact  that one-half of the supersymmetry charges are  preserved  
by  the  solution,  which,  in  this  case,  is  invariant  under  the  16  supersymmetry  
charges  

Qa+  PQa  (10.136)  

where  Q  and  Q act,  respectively,  on  the  right- and  left-movers  and  P  represents  
the  operator  that  reflects  the  directions  y'  transverse  to  the  brane.  

The  first  question  then  is:  do  any  of  these  solutions  give  us  the  metric  of  
a  black  hole?  If,  with  the  benefit  of  hindsight,  we  try  to  obtain  the  extreme  
five-dimensional  RN  solution  given  in  (10.101),  (10.102)  and  (10.103),  then  the  
obvious  first  attempt  is  to  choose  p  =  5.  (We  are,  therefore,  considering  type  lIB  
superstriog  theory,  since  p  is  odd.)  This  gives  four  (transverse)  spatial  dimensions  
y6,  y7,  y8,  y9,  

r2  ==  (y6)2  +  (y 7)2  +  (y8)2  +  (y9)2  (10.137)  

and  the  harmonic  function  Hs(r)  varies  as  r-2•  As  previously  noted,  if  the  five  
longitudinal  coordinates  x  ) ,  x2• x 3, x4, xS are  compactified  (on  as-torus  TS  say),  
the  metric  resembles  the  five-dimensional  RN  black  hole  (10.101).  However,  the  
warp  factors  in  both  the  longitudinal  and  transverse  directions  are  wrong  and,  
further,  the  dilaton  is  singular  on  the  event  horizon  at  r  =  rH  =  O.  (The  
quantum  states  associated  with  a  soli ton  are  found  by  identifying  the  zero  modes  
(or  collective  coordinates)  and  quantizing  them.  This  is  not  possible  if the  soliton  
is  singular.)  Now,  because  the  solitons  are  extreme,  we  may  combine  solutions  
with  different  values  of  p,  provided  that  (some)  supersymmetry  is  preserved.  
This  requires  that  some  of  the  supersymmetry  charges  (10.136)  preserved  by  one  
solution  are  also  preserved  by  the  other.  Thus,  if PI  and  P2  represent,  respectively,  
reflection  of  the  coordinates  transverse  to  the  PI- and  P2-solitons,  the  preserved  
supersymmetry  charges  satisfy  

- - -1­
Qa  +  PIQa  =  Qa  +  l'2Qa  =  Qa  +  p)(PI  P2)Qa  (10.138)  

and  we  see  that  the  unbroken  supersymmetries  correspond  to  + I  eigenvalues  of  
p l l 1'2.  In general, this requires that the number  of directions that are transverse  
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to one brane and parallel to  the other is a  multiple  of four and  that a  (p  - 2)-brane  
can  lie  within  a  p-brane  [20].  In  the  present  context,  therefore,  we  may  combine  
the  p  =  5  solitons  described  earlier  with  the  p  =  I  soli tons,  which  we  take  
to  have  longitudinal  coordinates  xO,xl-the  remaining  four  xQ  coordinates  are  
transverse  to  the  I-brane  but  parallel  to  the  5-brane.  Then  again  just  half  of  the  
supersyrnmetry  charges  are  preserved  leaving  just  eight,  corresponding  to  N  =  2  
supersyrnmetry in  four  dimensions.  

In  the  first  instance,  the  harmonic  function  HI  is  a  function  of l'  where  

1'2  ==  (x2)2  + (x3)2  + {x4)2  +  (xS)2  + r2  (10.139)  

and  varies  as  1'-6.  However,  when  the  four  directions  x 2, x 3 ,  x4,  x S  are  
compactified  on  T4  C  TS  of  volume  V4,  this  has  the  effect  of  'smearing'  the  
D  I-branes.  For  example,  compactifying  the  coordinate  x2  on  a  circle  of  radius  
R,  the  system  of  DI-branes  is  replaced  by  an  infinite  array  of  parallel  branes  
a  distance  21f  R  apart.  Because  they  are  extreme  states,  the  effective  harmonic  
function  HI  for  the  array  is  easily  written  down  and,  for  r  »  R,  this  function  
varies  as  [1'2  - (x2)2rS/2,  as  if  the  D  I-branes  also  wrapped  x 2.  The  effective  
number  of  D2-branes  is  ql# /  R.  This  result  obviously  generalizes  to  the  case  
in  which  all  four  coordinates  are  compactified  on  T4.  Then  HI  varies  as  r-2,  just  
like  Hs(r),  and  is  given  by  (10.130)  with  p  = 5  but  with  the  effective  number  qS  
of D5-branes  given  by  

qS  =  (21f #)4  (10.140) V4  ql·  

The  composite  system  has  warp  factors  that  are  given  by  the  'harmonic  
function  sum  rule'  [21].  With  the  proviso  that  the  harmonic  function  HI  for  
the  Dl-branes  is  replaced  by  the  smeared  version  HI  just  described,  so  that  both  
of  the  harmonic  functions  are  functions  of  the  overall  transverse  distance  r.  the  
warp  factors  of  the  composite  system  are  just  the  product  of  the  separate  warp  
factors  in  each  of the  three  sectors,  namely  parallel  to  both,  transverse  to  both  and  
transverse  to  the  I-brane  but  parallel  to  the  5-brane.  The  dilaton  is  also  given  by  
the  product.  Thus,  for  the  combined  system,  

ds2  = Hs-I/4H~3/4[(dxO)2 _  (dx l )2]  _  HS-I/4HII/4[(dx2)2  + ...  +  (dxS)2]  

- Hi/4iill/4[(dyfi)2  + ...  +  (dl)2]  (10.141)  

et;  =  H;I/2 HII/2  (10.142)  

I C(S)  =  [Hs- I  - l]dx° "dx l ... "  dxs  CO)  =  [HI- - l]dx°"  dx  I.  

(10.143)  

Then  the  dilaton  is,  as  required,  finite  at  the  event  horizon.  (We  note,  incidentally,  
that  this  is  only  possible  when  at  least  two  'charges'  are  activated.)  In  addition.  
the  warp  factor  associated  with  the  yi  directions  now  approximates  the  H  warping  
in  (10.1  01).  Thus.  ignoring  the  directions  x 2, x 3• x4.  x S  for  the  moment,  all  
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that  is  needed  to  complete  the  resemblance  to  (lO.lOI)  is  a  further  warping  
approximating  H- I  in  the  xO-direction.  In  any  case,  in  its  present  form,  
the  metric  does  not  have  a  finite  horizon  'area',  because  gll  vanishes  at  the  
horizon:  it  requires  a  further  warping  approximating  H.  In  fact,  the  missing  
ingredient is  supplied by  adding  momentum  in  the  x  I-direction.  Since  the  ex treme  
solution  is  boost  invariant,  we  cannot  add  momentum  simply  by  boosting  it.  
The  generalization  arises  [21]  because  the  solutions  have  a  null-bypersurface  
orthogonal  isometry  which  permits  the  replacement  

(dx~2 _  (dx l )2  -+  (dx0)2  _  (dx l )2  +  Hp(r)(dx0  _  dx l )2  (l0.144)  

for  an  arbitrary  harmonic  function  Hp(r).  This  is  exactly  what  happens  if  we  
do  a  Kaluza-Klein  reduction  along  the  x  I-direction  but  with  a  non-zero  off­
diagonal  component  in  the  metric  gOl/gll  =  Hp(r)-I  (see  exercise  7).  Indeed,  
the  resulting  metric  can  be  obtained  from  a  non-extreme  metric  by  this  means:  
the  dilaton  and  gauge  potential  form  fields  are  unaffected.  The  final  form  of  the  
metric  is  

ds2  =  HS-I/4ii~3/4[(dxO)2 _  (dx l )2  +  Hp(dx0  - dx l )2]  

_  HS-I/4iill/4[(dx2)2  + ...  +  (dxS)2]  _  H:'4iill/4[dr2 + r2dn~]. 
(10.145)  

We  may  write  the  hannonic  functions  in  the  form  

2 _  r.  L2  r2  
H.  =  1  +'2 H5  =  I  +-f Hp=..J:.. (10.146) 

r  r  r2  

where,  using  (10.106),  (10.131)  and  (10.140),  

2  2  I  (27r #)4  cl rf  = q. g,a'  (27r  #)4  L~ = qsg,a'  rp  = ng,a  V.  "2 
V4  4  R  

(10.147)  
with  R  the  radius  of the  circle upon which  the  x  l-coordinate  is  compactified,  and  
n  an  integer  specifying  the  (right-moving)  momentum  P  =  n/ R  on  the  circle.  
Adding  this  momentum  breaks  a  further  half  of  the  supersymmetries  leaving  a  
total  of  four  preserved  supersymmetry  charges.  This  corresponds  to.N  =  I  
supersymmetry  in  five  dimensions.  The  'area'  A H  of the event horizon  is defined  
as  the  (eight-dimensional)  volume  of  the  time  slice  at  the  horizon.  Taking  the  
limit  r  -+  0  from  above,  this  gives  a  product  of  factors,  one  from  each  of  the  
three  disjoint  pieces  of the  metric:  

AH  =  [(r~3/4L;I/4rp )27r  R][(r:/4L;1/4)4V4)[(r:/4 L~/4)327r2] 

= 47r3 RV4r.Lsrp.  (10.148)  

The  surface  gravity  and,  hence,  the  black-hole  temperature  is  zero,  as  might  be  
expected  from  an  extreme  black  hole  (see  exercise  7).  Using  the  (generalized)  
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Bekenstein-Hawking  fonnula  (10.75),  the  entropy  Sbh  associated  with  this  
solution  is  

AH  
Sbh  = -- = 2lr  Jq\qsn  (10.149) 

4GIO  

independently  of  the  size  of  the  compact  dimensions  and  of  the  string  coupling  
8s.  Thus,  the  entropy  is  detennined  entirely  by  the  integers  q\,  qS  and  n  and  it  is  
this  feature  that  allows  the  identification  of  the  associated  microstates.  The  fact  
that  the  entropy  of  a  black  hole  at  zero  temperature  is  non-zero  does  not  imply  
a  violation  of  the  third  law  of  thennodymamics,  if  indeed  the  analogy  between  
black-hole  dynamics  and  thennodynamics  is  exact.  The  version  of  the  third  law  
that  suggests  that  there  is,  is  a  statement  about  the  equations  of  state  for  ordinary  
matter.  

10.9  Counting  the  microstates  

We  have  already  argued  that  D p-branes  are  sources  of  R-R  charge  and  we  have  
also  shown  in  (10.135)  that  the  soli ton  solution  (10.129)  has  q p  units  of  p-brane  
R-R  charge.  Thus,  the  obvious  interpretation  of  the  black-hole  solution  that  we  
have  just  constructed  is  that  it  is  a  bound  state  made  out  of  q5  D5-branes  and  
ql  DI-branes  (D-strings)  with  some  momentum  nj R.  However,  Dp-branes  are  
defined  as  pointlike  objects  in  their  transverse  dimensions  in  an  otherwise  flat  
spacetime.  The  R-R  solitons  that  we  have  derived  are  only  asymptotically  fiat,  so  
why do  we  believe that they  are  made  of D-branes?  We  have noted  previously that  
the  effective  action  from  which  these  solitons  derive  is  a  good  approximation  so  
long  as  the  curvature  is  small  lR( G)a'  «  I.  The  length  scale  defined  in  (10.131),  
associated  with  the  solution  (10.129),  is  given  by  Lp  '"  (gsqp)1/(7- p)..j(ii.  Thus,  
when  gsq p  >  I,  the  curvature  is  small  and  the  soliton  solutions  are  valid.  In  
fact,  the  effective  supergravity  equations  were  derived  using  string  perturbation  
theory,  which  is  valid  only  when  gs  <  l.  Consequently  the  soliton  solutions  
apply  only  when  q p  is  large,  so  that  the  curvature  is  small.  When  the  string  
coupling  gs  is  very  small,  the  R-R  soli tons  are  very  massive,  as  is  apparent  from  
(10.134).  However,  their  gravitational  field  is  proportional  to  G  IOM p  and,  since  
G  IO  ex  g;,  the  associated  spacetime  becomes  flat  as  gs  -+  O.  Also,  the  horizon  
area  AH  =  4G IOSbh  approaches  zero  in  this  limit.  When  it  is  smaller  than  the  
string  scale  I;  =  4lr2a'.  the  higher-order  curvature  tenns  become  important  
and  the  Hat  space  description  becomes  valid.  Provided  that  gsql  «  I  and  that  
gsqS  «  I,  we  are  considering  weakly-coupled  D-branes  in  a  flat  spacetime.  In  
this  case,  it  is  straightforward  to  count  the  number  of  configurations.  We  shall  
return  shortly  to  the  case  where  gsqp  >  I  in  which  our  black-hole  solutions  are  
valid.  

The  configuration  in  question  (10.145)  breaks  the  IO-dimensional  Lorentz  
symmetry  SO(I,  9)  -+  SO(l,  1)  x  SO(4)11  x  SO(4)1.  The  first  factor acts  on  
the  D-string  world  sheet  (xo,  x  I),  the  second  factor  on  the  rest  of  the  D5-brane  
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world  volume  (X2, X 3,  X4,  x 5),  and  the  final  factor  on  the  remining  dimensions  
(y6,  Y 7,  y8.  y9)  that  are  transverse  to  both.  This  symmetry  forbids  rigid  branes  
from  carrying  linear  or  angular  momentum.  So  the  question  arises  as  to  what  
degrees  of  freedom  do  carry  the  momentum  n/ R.  An  obvious  possibility  is  the  
massless  states  of the  open  strings that  begin  and  end  on  D-branes.  (The  massive  
excitations  of  the  O-branes  have  masses  proportional  to  g; I  and.  hence,  do  not  
play  a  role  when  the  coupling  is  weak.)  The  I-I  states,  in  which  the  open  string  
begins  on  a 0  I-brane  and  ends  on  a 0  I-brane,  generate  a  vector  supermultiplet  in  
the  adjoint  representation  of  the  U(ql)  gauge  group.  similarly  for  the  5-5  states  
with  gauge  group  U(qs).  In  geometrical  terms,  the  VEVs  of  the  scalar  fields  
in  these  supermultiplets  correspond  to  separations  of the  individual  01- and  05­
branes  from  each  other.  This  takes  us  away  from  the  black-hole  state,  which  
has  maximal  degeneracy.  So  instead  we  consider  the  1-5  and  5-1  states.  These  
generate  hypermultiplets  in  the  (fl' 9s)+(91'  qs)  of U(ql)  x  U(qs),  which  gives  
a  total  of  4qlqS  (scalar)  bosons  and  an  equal  number  of  (Weyl)  fermions.  The  
vacuum  expectation  values  of  the  scalars  are  associated  with  the  4  coordinates  
(transverse  to  the  0  I-branes)  of each  0  I-brane  giving  its  position  relative  to  each  
05-brane.  This  configuration  must  be  made  to  carry  P  =  n/ R  momentum  in  
the  x  I-direction.  With  the  four  coordinates  x2, x 3 ,  x4,  xS compactified  on  a  torus  
whose  size  is  small  compared  to  that  of  the  circle  on  which  x  I  is  compactified  

(V ;/4  «  R),  we  effectively  have  a  two-dimensional  field  theory  on  the  world  

volume  (xO.xl)  of  the  D-string.  The  Hamiltonian  is  H  =  n/R  and  this  
has  to  be  distributed  among  the  4qlqS  bosons  and  fermions.  Apart  from  the  
(minor) complication  introduced  by  having  fermions.   this is   precisely the  problem   
discussed  in  section  10.4  in  which  we  estimated  the  number of  (bosonic)   string  
states  having mass  n   (in string  units).   

As  before.  the  problem  may  be  solved  using  a  generating  function  (the  
partition function)   

00  

Z(w)  ==  trwN  =  Ldnwn  (10.150)  
n::{)  

where  N  ==  PR and  d n  is  the  (required) number  of  states   having eigenvalue  n   of  
N  (and.  therefore.  right-moving momentum  n/  R).  Then  

00  

trwN  = n  (1  + w'"   )4qIQS  (10.151)  
wm m=1  1 - •  

The  fermions  give  the  terms  in  the  numerator  and  the  bosonic  contribution  in  
the  denominator is   derived  precisely  as  in  (10.81).  As  in  section  10.4,  we  may  
estimate d n  for large   values of  n  (exercise  12) with   the  result [22]   

dn  ...  exp (21r  ,Jqlqsn).   (10.152)  

Hence.  
lndn  ... 27r,Jqlqsn   =  Sbh  (10.153)  
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using  (10.149).  This  is  a  spectacular  result.  We  have  recovered  the  Bekenstein­
Hawking  formula  (10.149)  for  the  entropy  of  the  extreme  black  hole  (10.145)  
from  counting  the  microstates  that  make  up  this  black  hole.  We  assumed  that  
V 1/4  «  R  in order to simplify the counting  of states but this  is not essential.  Since  
the  number  of  states  (10.152)  does  not  change  when  the  radii  are  continuously  
varied,  we  know  that  the  entropy  is  given  by  (10.153)  for  all  values  of  R.  Also,  
the  states  were  counted  in  the  limit  gsql  «  1  and  gsqS  «  1  where  we  have  
D-branes  in  flat  space,  whereas  the  black-hole  solution  (10.145)  is  valid  only  
when  gsql  >  I  and  gsqs  >  I  so  that  higher-order  curvature  corrections  are  
negligible.  However,  because  these  are  extreme  solutions,  they  are  protected  by  
their  supersymmetry  and  we  may  assume  that  the  calculated  degeneracy  will  not  
undergo  renormalization  by  quantum  effects.  

This  five-dimensional  RN  black  hole  utilizes  three  non-zero  U (I)  charges-­
the  two  R-R  charges  ql  and  qS,  and  the  momentum  n/R  in  the  internal  xl­
direction-and  this  is  the  minimum  number  needed  to  get  a  finite  area  with  a  
regular  horizon.  In  four  dimensions,  a  minimum  of  four  non-zero  charges  is  
needed.  The  result  can  be  generalized  to  near-extreme  black  holes.  in  which  case  
the  entropy  becomes  a  function  of  the  mass  of  the  black  hole  as  well  as  its  four  
charges.  We  shall  not  pursue  this  further.  The  interested  reader  is  referred  to  one  
of the excellent reviews  [23-25]  in  the  literature.  

10.10  Problems  

1. 	 Show  that  a  particle  on a  radial  timelike  geodesic  r  =  R(t)  in  a  Schwarzchild  
spacetime  falls  from  rest  at  r  =  R(O)  >  2M  to  R  =  0  in  proper  time  

-3/2 
( 	 )'l'  = re  M  1 - ./1  - 2M R(O)  .  

2.  Verify that the vector  I'" normal to the event horizon  of a Schwarzchild black  
hole  has  components  (10.11)  in  Eddington-Finkelstein  coordinates.  

3.  Verify  that  the  Kerr-Newman  metric  reduces  to  the  Reissner-NordstrOm  
metric  when  the  angular  momentum  J  = O.  

4.  Verify  Smarr's  formula  and  (10.44)  for  the  Kerr-Newman  metric  where  the  
surface  gravity  is  K  = (r + - r _) /2(rl  + a2)  and  the  co-rotating  electrostatic  

potential  is  <f>  H  =  (;f+!2)'  
5.  The  surface  gravity  K  can  be  calculated  directly  using  the  formula  

K 2  -- -~ I  X"';v X  I ",;v  r=rH  

where  X  is  a  timelike  Killing  vector  normal  to  the  horizon  (and  normalized  so  
that  X2  =  I  at  spacelike  infinity)  and  the  serni-colon  indicates  the  covariant  
derivative.  Using  the  metric  (lO.7)  and  the  Killing  vector  X'"  =  8~, verify  
that  X  is  a  unit  timelike  Killing  vector  and  that  the  previous  formula  is  
satisfied  by  K  =  1/4M,  as  required.  
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6. 	 Calculate  the  Schwarzchild  radius  for  a  black  hole  having  mass  M  =  M0'  
Calculate also  its  temperature  and  entropy.  

7. 	 By  choosing  new  coordinates  p  =  Jr  - r +  and  'l'  =  it.  show  that  near  
the  horizon  the  line  element  for  the  Reissner-Nordstrom  black  hole  may  he  
written  in  the  form  

_ds2  :::::  Ap2  d1'2  + 4A -I  dp2  + r2  dQ~ (l0.IS4)  

where  A  ==  (r + - r _) 1 r!.  Hence.  show  that  l'  is  an  angular  coordinate  with  
period  411'  A-I  and.  therefore.  that  the  temperature  of  the  extreme  black  hole  
is  zero.  

8.  Evaluate  the  extrinsic  curvature  Kab  of  the  Schwarzchild  metric  on  a  
spherical  shell  of  radius  R  and  verify  equations  (I 0.6S)  and  (10.66).  

9.  Show  that  the  N  =  2  supersymmetry  algebra  (10.91)  can  be  written  in  the  
form  (10.92).  

10.  Express  the  function  f(w)  given  in  (10.82)  in  terms  of  the  Dedekind  eta  
function  

00  

11(1')  ==  eun/ 12  n (I  - e2n'im'l').  
m:ol  

Using  the  property 
 
11(-1/1')  =  (-i1')1/2rJ (1') 
 

show  that  

( -211')1/2  (  11'2)  (411'2) 
f(w)  =  lnw  w- I / 24 exp  61nw  f  Inw  .  

Hence.  show  that  

f(w)""  A(I  - w)-1/2 exp  (  6(llr~ w»)  for  W""  I  

and  find  the  power-law  correction  to  the  exponential  dependence  given  in  
(10.89).  

11.  For  the  extreme  Reissner-Nordstrom  black  hole  with  the  metric  (10.94).  
show  that  near  the  horizon  the  metric  approximates  Ad S2  x  S2.  

12.  Show  that  the  partition  function  Z(w)  defined  in  (10.  ISO)  and  (10.1SI)  has  
the  asymptotic  behaviour  

Z(w)  ....  exp  (qIQS1r2) forw""  I 
I-w  

and.  hence.  verify  the  degeneracy (10.152)  of states having  momentumnl R.  
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10.11  General references   

The  books and  review   articles  that  we  have  found  most  useful  in  preparing  this  
chapter are:   

•  Hawking S  W  1973  The Event  Horizon   Black  Holes  Cours de  I'Ecole  d'ete   
de Physique  Theorique,  Les   Houches (New  York:   Gordon and  Breach)   1  

•  Townsend P  K  Cambridge  University  lecture  notes  on   Black Holes,   arXiv:gr­
qc19707012  

•  Horowitz G   T  1996 The  origin  of  black  hole   entropy  in  string  theory  Seoul  
/996,  Gravitation and  Cosmology  46,  arXiv:gr-qc/9604051   

•  Johnson C   V 2003  D-Branes  (Cambridge:   Cambridge University  Press)   
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