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About YBC 7289

Figure 1. YBC 7289 is an ancient Mesopotamian clay tablet with interesting and important mathematical
content. (Photograph used with the permission of the Yale Babylonian Collection. Personal classroom use
permitted; all other uses require permission from the Yale Babylonian Collection.)

YBC 7289 is an Old Babylonian clay tablet (circa 1800–1600 BCE) from the Yale Babylonian Collection. A hand
tablet, it appears to be a practice school exercise undertaken by a novice scribe. But, mathematically speaking,
this second millennium BCE document is one of the most fascinating extant clay tablets because it contains not
only a constructed illustration of a geometric square with intersecting diagonals, but also, in its text, a numerical
estimate of  correct to three sexagesimal or six decimal places. The value is read from the uppermost
horizontal inscription and demonstrates the greatest known computational accuracy obtained anywhere in the
ancient world. It is believed that the tablet’s author copied the results from an existing table of values and did not
compute them himself. The contents of this tablet were first translated and transcribed by Otto Neugebauer and
Abraham Sachs in their 1945 book, Mathematical Cuneiform Texts (New Haven, CT: American Oriental Society).
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More recently, this tablet was the subject of an article by David Fowler and Eleanor Robson [3], which provides
insights into the probable methodology used to obtain such an accurate approximation for 

An excellent summary of the tablet's content and context is available from Duncan Melville's Mesopotamian
Mathematics website. His "Tablets on the Web" pages include one on YBC 7289 [4]. Bill Casselman's website [2]
contains additional analysis and photographs. Begin with his YBC 7289 Main Page or go straight to his Analysis of
YBC 7289 for instructions on how to read the tablet's cuneiform text.

YBC 7289 was acquired by Yale University from the estate of the 19th century industrialist J. P. Morgan. The
image of YBC 7289 in Figure 1 is presented with the permission of the Yale Babylonian Collection and the
assistance of Ulla Kasten, Associate Curator of the Collection.

YBC 7289 in the Classroom

When Frank Swetz sent me an image of YBC 7289, the Old Babylonian tablet displayed in Figure 1 above, to
share with Convergence readers, I smiled with some sense of satisfaction. This was because, just this past May
term, after many years of trying, I felt I finally had honed to as-good-as-it-would-get my presentation of the
contents of this tablet to my liberal arts mathematics history students. The ideal I had in mind all these years was
to design an activity in which students deciphered the tablet, discovered for themselves Old Babylonian (or, more
generally, ancient Mesopotamian) base 60 fractions, figured out that one of the numbers on the tablet
approximated the value we denote as  and completed all three of these tasks well within 50 minutes.

As is often the case in matters of teaching and learning, the breakthrough came when I gave up some of my
aspirations, deciding that it wasn’t so important that students deciphered the tablet themselves or – and this was
the hardest goal to give up – that they completed the remaining parts of the exercise in small groups without much
assistance from me. After long experience, I finally admitted that, in order to complete this exploration in a
reasonable amount of time with every student understanding the mathematical ideas, I probably needed to lead
the discussion.

Figure 2. This sketch of the tablet appears on page 27 of the book by Aaboe [1], and is reproduced here
courtesy of the Mathematical Association of America (MAA).

Coming into this discussion, my 30+ students knew how to represent whole numbers using Mesopotamian
cuneiform fairly well and how to use the Pythagorean Theorem quite well. They also had some recent experience
with fractions in the form of ancient Egyptian unit fractions, but no experience with Mesopotamian fractions. After
seeing photographs of the tablet itself and receiving their own copies of the drawing by Aaboe [1, p. 27] in Figure
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2 above (which I also projected using a document camera or drew on the board – I don’t remember which), they
could make their “best guesses” of the digits making up the three numbers shown in the diagram as  in the
upper left;  along the horizontal diagonal; and  in the lower half of the figure. What I mean
by “best guesses” is that students knew that the digits along the horizontal, for instance, might be read as, say,

 but that  would be more likely without additional context. Their best
guesses as to the numbers themselves then would have been

and

We agreed that, if the diagram was indeed a square, then the length of each of its sides and, in particular, of its
upper righthand side, would be  I then asked which of the two numbers along the diagonal was its length.
Some students said that both numbers were too large to be the length of the diagonal of a square of side length

 I asked the class to compute the length of the diagonal by focusing on the triangle making up the upper half of
the square – that is, I hid the lower half of the square until several students noted that the upper half formed a
right triangle with its hypotenuse formed by the diagonal in question. Students then used the Pythagorean
Theorem to compute the length of the diagonal rounded to 6 places after the decimal point, obtaining

 They noticed that there was also a  among the digits of the Mesopotamian
numbers, but were otherwise stymied. My hint was to consider what  represents to us; namely,

or

or

This hint was enough to prompt students (after we all enjoyed an “aha!” moment together) to begin writing the
number  from the tablet as

with some students requiring help from their neighbors to write the last summand – and with some students
preferring  or . I then asked if this number was  and, with some reminders on how

to enter sums of fractions into their calculators without losing accuracy, they reported that

when rounded to 6 places after the decimal point, which agreed with  when rounded to 4 places after
the decimal point.
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I then asked the students what the remaining number on the tablet could be. They were hesitant to experiment, so
one way to proceed might have been to assign half the class to convert  to decimal and the other
half to convert  to decimal and both groups to multiply their result by  Instead, I reminded the
class that I would compute the length of the diagonal as

and asked them to compute  on their calculators. On seeing that  students converted
 to

which, as I excitedly pointed out, is an approximation to  accurate to 5 digits after the decimal point.

But what could the author of the tablet be trying to tell us? In answer to this question and with our diagram labeled
with  and  in appropriate places, at least a few students concluded that the tablet might be interpreted as
saying that, given a square of side length  (or a right triangle with both legs of length ), in order to obtain the
length of the diagonal (or the hypotenuse), multiply  by  or  and, more generally, given any
side (or leg) length, multiply it by  in order to get the length of the diagonal (or hypotenuse). If I had
not already done so, at this point, I would have shared that Assyriologists (= modern scholars of ancient
Mesopotamia) believe the tablet to be an erasable tablet used by a student in scribal school. Definitely at this
point, I shared that these scholars believe the exercise assigned to the scribal school student to have been, given
a square of side length  find the length of the diagonals of the square by either remembering or looking up in a
table the correct constant by which to multiply the side length in order to get the diagonal length. In fact, according
to Fowler and Robson:

This approximation to  would have been copied by the scribe from a so-called coefficient list – a list of
numbers useful for doing calculations. These reference lists were a vital part of Mesopotamian
mathematics. [3, p. 370]

At some point, I introduced the notation  for the base 60 number

(even though  would make more sense to American students). Students were not too surprised to learn
that one most often determines where the sexagesimal point goes by guessing from context because they had
already learned this to be true for whole numbers.

There are many directions in which to proceed from here, with perhaps the most interesting being to multiply the
sexagesimal numbers  and  together without converting to decimal. This is a skill that my best
students almost always figure out on their own, and that the entire class usually ends up discussing because
invariably one of the students who worked it out for herself will present it to the class (often for base 20 instead of
base 60) as a step in solving another problem. It’s even more fun when these students try to add and multiply
Maya calendar numbers, in which the place that would be  in a base 20 system is instead  (and the
next place  and so on), but I digress. Another direction would be to focus on interpretation of the
digit  as  or  in which case the remaining two numbers on the tablet would be  and  (see

references [3] and [4] for brief discussions of Mesopotamian interest in reciprocals). One also could discuss how
the Mesopotamians obtained their estimate of  (see [3] for one possible answer). This year, one of my
students subsequently made a presentation on Ptolemy’s table of chords, so we were reminded of our base 60
convention for minutes and seconds when measuring angles (arcs for Ptolemy) in degrees.

Although it would be quick (15 minutes or less) and fun to make a presentation like the one described above to
mathematics majors and minors, these students can complete this exercise on their own or in small groups

1; 24, 51, 10
1, 24; 51, 10 30.

d = = = 30 ≈ 42.426407+302 302− −−−−−−−√ 2 ⋅ 302− −−−−√ 2
–

√

2
–√ ≈ 1.414214,2

–√
1; 24, 51, 10

1 + + + ≈ 1.414213,
24

60

51

3600

10

216000

2
–√

30 30 2
–√

30 30
30 1; 24, 51, 10 ,2

–√
1; 24, 51, 10

30,

2
–√

42; 25, 35

42 × + 25 × + 35 ×600 60−1 60−2

42.25, 35

30 1; 24, 51, 10

202 18 × 20
20 × 18 × 20

30 0; 30 = 30
60

,1
2

2
–√ 1

2√

2
–√



Tags: History of Mathematics

without much assistance. I am not convinced that deciphering the text from a photo of the tablet itself is worth their
time, but, given the same prerequisite knowledge of Mesopotamian base 60 whole numbers, the drawing from
Aaboe’s book, and a few leading questions, they can figure out on their own essentially what’s going on in this
tablet and hence be prepared for reading and/or discussion of Assyriologists’ current knowledge of Old Babylonian
coefficient lists, including how Mesopotamians may have made this approximation of  in the first place.
Besides being an excellent reference for instructors, the article by Fowler and Robson [3] makes a good – and
free! – reading assignment for these students.
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