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Old Babylonian mathematics contains many interesting word problems on a wide variety 
of more or less practical topics.  Among them are a number involving various (finite) 
sequences and series, usually based on arithmetic, geometric or harmonic (i.e., reciprocal) 
progressions.  For example, two problems studied below may be stated in modern dress 
as: 

10 brothers share $100 (in descending arithmetic progression).  The share 
of the eighth brother is $6.  How much was the difference between shares?   
 
I had a measuring rod.  Each time I measured, 1 cm fell off.  By the time it 
was all gone, I had measured 120 cm.  How long was the rod originally? 
 

Mesopotamian scribes had a propensity for ordering their data and it is natural 
that we find ordered mathematical data.  From there, it is a short step to 
constructing problems based on regular changes in some variable.  In this paper, 
we indicate some of the types of ordered data, and arithmetic problems and word 
problems based on progressions to be found in the corpus of Old Babylonian 
mathematics.  The paper does not attempt to provide an exhaustive survey of 
these types of problems, but the examples chosen do show some of the range of 
techniques used to solve such problems, especially the more complicated inverse 
ones. 
 
Ordered Data 
 
It is well-known that the scribes of Mesopotamia had a passion for organizing data into 
standard forms or lists, and that these lists had a pedagogical function.  Already in the 
archaic period of the earliest writing (Uruk IV-III, 3300-3000 BC) there are many 
examples of tablets with extracts of standard lexical lists such as the profession list 
known as Lu-A1.  Over the course of the third millennium there was a great expansion 
and codification of these lexical lists and a great many examples are known numerous 
sites.   

                                                 
1 A large number of these archaic lexical lists were published by Englund and Nissen [2]; they can now be 
accessed via the CDLI website http://cdli.ucla.edu/. A related project is the Digital Corpus of Cuneiform 
Lexical Texts (DCCLT) under the direction of  Niek Veldhuis, which aims to present the entire corpus of 
lexical texts (http://cdli.ucla.edu/dcclt/dcclt.html). 



 
By the time of the Old Babylonian period (2000 – 1600 BC), the best-documented period 
of Mesopotamian mathematics, these lists had an additional educational function, for 
students learned to write Sumerian, and developed their Sumerian vocabulary through 
copying such lists, as Sumerian was no longer a living, spoken language.  As students 
advanced, they graduated to more complicated texts.  Recently, the outlines of the scribal 

syllabus have been unraveled by Niek Veldhuis [24, 25], 
while Eleanor Robson has helped to fit the study of 
mathematics into place, at least in the case of schooling at 
Nippur [17, 18].  According to this scheme, the first sustained 
exposure students would have with mathematical material 
would be copying out so-called metrological lists.  Such lists 
recorded quantities of capacity, weight, area and length from 
very small units to the very large using standard metrological 
units and notation.  For example, the full capacity list started 
with 飴 sìla (about 飴 liter) and ended with 1,00,00 gur 
(approximately 65 million liters) [3].  Changes in step-size as 
the quantities increased meant that the lists, although large, 
were not of unmanageable length.  These metrological lists 
are commemorated in the comment: ‘I want to write tablets: 
the tablet (of capacities) from 1 gur of grain to 600 gur; the 
tablet (of weights) from 1 gín to 10 mana of silver’ from one 
of the eduba or school-house texts [1].  An extract from such 
a list is given in Table 1.2   

18        gur 

19        gur 

20        gur 

30        gur 

40        gur 

50        gur 

1,0       gur 

1,10     gur 

1,20     gur 

1,30     gur 

1,40     gur 

1,50     gur 

2,0       gur 

3,0       gur 

4,0       gur 

5,0       gur 

6,0       gur 

 
A little more complicated than metrological lists were 
metrological tables.3  These tables were based on the great 
innovation of the late third millennium that made Old 
Babylonian mathematics possible – the development of the 
abstract sexagesimal numeration system.4    Whereas a 

student preparing a metrological list merely wrote out 
quantities in correct units, a student compiling a 
metrological table recorded first the quantities in proper 
metrological units in one column and then the 

Table 1: Extract from a  

           metrological list 

                                                 
2 The extract is taken from Column III of the obverse of CBM 10990+19815+19757 (BE 20/1, 29), a 
metrological tablet of which three fragments exist, adding up to only a portion of the original.  Published by 
Hilprecht in [5].  The original tablet had six columns on the obverse and six on the reverse.  For the 
multiplies of gur given in the extract, the cuneiform notation is similar to the abstract sexagesimal system 
(base 60) and has been translated as such using the convention of commas to separate sexagesimal places.   
3 This distinction between ‘lists’ and ‘tables’ is the standard usage.  More recently, Robson [19] has argued 
for a more precise and restricted usage of the term ‘table’.  In Robson’s typology, tables should have more 
structured formatting with both horizontal and vertical calculation.  
4 The sexagesimal system is a place-value system with a base of 60.  There are several conventions for 
transliterating sexagesimal notation.  Here, we follow the Neugebauer convention of separating 
sexagesimal places with a comma, and indicating absolute size where necessary with a semi-colon.  Thus, 
5,30 denotes 330 but 5;30 denotes 5 ½.  

 



corresponding equivalents in terms of sexagesimal multiples and fractions of a base unit
in another column.  In most Old Babylonian mathematical problems, the statement of th
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carried out in the abstract system based on an (often 
only implied)  
unit.  Thus, it was important for scribes to practice 
converting between metrological values and the 
sexagesimal system.  Table 2 gives an extract from an 
Old Babylonian metrological table (BE 20/1, 32) 
recording multiples of še and metrological fractions of 
a gín and converting them into sexagesimal fractions of 
a gín.  The metrological relationship is that 1 gín 
contains 180 (or 3,0 in the sexagesimal system) še.    
 
The core of Old Babylonian mathematical practice, 
greatly facilitated by the new place-value system, was 
multiplication and the inverse operation of division, 
effected in Mesopotamia by multiplying by the 
reciprocal.  Hence, it was important for students to 
practice multiplication facts, and, as usual, the practice 
was organized into tables, in this case multiplication 
and reciprocal tables, of which some 300 examples 
survive.  Additionally, we have several examples of 
tables of squares, square roots, exponentials and 
associated organized mathematical data.5  Two 
examples of these are given in Tables 4 and 5, one a 
short series of square roots (Ist Ni 2739, published in 
MKT I) and the other a list of exponentials (Ist. O 3816, 
also originally published by Neugebauer in MKT I).   

 
 
 

 

Table 3: A table of square (roots) 

 
 

 

0 20 še 0;6,4
21 še 0;7 

22 še 0;7,20 

23 še 0;7,40 

24 še 0;8 

25 še 0;8,20 

26 še 0;8,40 

27 še 0;9 

28 še 0;9,20 

29 še 0;9,40 

1/6 gín 0;10 

1/6  e 10 0 gín š 0;13,2

¼ gín 0;15 

¼ gín še 5 0 0;16,4

飴 gín 0;20 

½ gín 0;30 

絢 gín 0;40 

5/6 0 gín 0;5

1 gín 1 

Table 2: Extract from a metrological table 

 e 1 1
1,2,1 e 1,1 
1,2,3,2,1 e 1,1,1 
1,2,3,4,3,2,1 e 1,1,1,1 

5 Most of these tables have been minimally published by Neugebauer in MKT [14] and Neugebauer and 
Sachs in MCT [15].  Since the latter work appeared, a few more such texts have been published.  

 



 
 
 
 
 
 
 
 

14,3,45 a.rá 3,45 
52,44,3,45 a.rá 3,45 
3,17,45,14,3,45 a.rá 3,45 
12,21,34,37,44,3,45 a.rá 3,45 
46,20,54,51,30,14,3,45 a.rá 3,45 
2,53,48,25,43,8,22,44,3,45 a.rá 3,45 

Table 4: An exponential sequence 

 
 
Multiplication tables are organized in a number of different ways.  Neugebauer and Sachs 
identified three common types and four more less-common variants [15: 20] depending 
on the precise terminology used.  This detailed typology has been recharacterized by 
Robson as representing ‘verbose’ and ‘terse’ texts.  Further, Robson has suggested that 
verbose tables were written for initial practice, while terse tables, especially combined 
multiplication tables with several different principal numbers, were composed for later 
review [19].  Ignoring these minor typological differences, a typical multiplication table 
would have a format such as in Table 3 (NBC 7344).  Each multiplication table has a 
principal number (for Table 3 the principal number is 5) and records multiples of that 
principal number from 1 to 19, and then 20, 30, 40, and 50 times.  In almost all cases, the 

principal number is 
a regular number 
appearing in the 
standard table of 
reciprocals.6  The 
close connection of 
the multiplication 
tables to 
reciprocals is 
emphasized by the 
large combined 
tables that begin 
with a reciprocal 
table and continue 
with a series of 
multiplication 
tables (See MKT 

and MCT for 
examples).   

5 a.rá 1 5 a.rá 12 1 
a.rá 2 10 a.rá 13 1,5 

a.rá 3 15 a.rá 14 1,10 

a.rá 4 20 a.rá 15 1,15 

a.rá 5 25 a.rá 16 1,20 

a.rá 6 30 a.rá 17 1,25 

a.rá 7 35 a.rá 18 1,30 

a.rá 8 40 a.rá 19 1,35 

a.rá 9 45 a.rá 20 1,40 

a.rá 10 50 a.rá 30 2,30 

a.rá 11 55 a.rá 40 3,20 

   a.rá 50 4,10 

Table 5: A multiplication table 

 

                                                 
6 A sexagesimal number is called ‘regular’ if its only prime divisors are 2, 3, and 5, the divisors of 60.  
Regular numbers have finite sexagesimal reciprocals.  A rare example of a multiplication table with 
principal number not regular was published recently by Nemet-Nejat; it has principal number 13 [12].  

 



 

 

 
The standard reciprocal table began, ‘1 its 絢 is 40; its ½ is 30’, and continued with lines 
of the form ‘igi n gál-bi n ’ , ‘the reciprocal of n is n ’ for regular numbers n from 1 to 
1,21 (= 81).  The formatting was thus similar to that of the multiplication tables.  The 
reciprocal pairs, though not with the standard formatting, are given in Table 6.   
 

2 30 16 3,45 45 1,20 
3 20 18 3,20 48 1,15 
4 15 20 3 50 1,12 
5 12 24 2,30 54 1,6,40 
6 10 25 2,24 1 1 
8 7,30 27 2,13,20 1,4 56,15 
9 6,40 30 2 1,12 50 
10 6 32 1,52,30 1,15 48 
12 5 36 1,40 1,20 45 
15 4 40 1,30 1,21 44,26,40 

      Table 6: The standard reciprocals 

 
Since reciprocals were so important in Old Babylonian mathematics, students needed  
practice finding reciprocals of larger regular numbers, and there was a standard 
procedure, dubbed ‘The Technique’ by A. Sachs, for finding these reciprocals [20]. A 
variant procedure was described by Friberg [4].  Several tablets are known that contain 
sequences of reciprocal pairs, presumably generated to provide problems for students.  
These sequences of reciprocals often began with the favorite pair 2,5 ~ 28,48  and 
continued by a process of doubling and halving.  For example, the tablet BM 80150 (see 
MKT I) begins with a reciprocal table, continues with 18 multiplication tables, and ends 
with a sequence of reciprocal pairs.  The end of this sequence is very broken, the rest is 

given in Table 7.   The early part 
of the sequence is also found on 
CBM 10201 [5: 25]; pairs from 
further on in the sequence 
appear, sometimes incorrectly, 
on other tablets.  For example, 
YBC 10802 has the pair 
2,22,13,20 ~ 25,12,42 [which 
should be 25,18,45], and MLC 
651 has the pair 1,20,54,31,6,40 
~ 44,29,37,50,15,20 [instead of 
44,29,40,39,50,37,30] (see [20] 
for a discussion of these and 
other examples).    

2,5   28,48 igi-bi 
4,10   14,24 igi-bi 
8,20   7,12 igi-bi 
16,40   3,36 igi-bi 
33,20   1,48 igi-bi 
1,6,40     54 igi-bi 
2,13,20     27 igi-bi 
4,26,40     13,30 igi-bi 
8,53,20       6,45 igi-bi 
17,46,40       3,22,30 igi-bi 

Table 7: Part of a reciprocal sequence 

 

 

 



 
Reciprocal Series 
 
In all of the examples given above, the purpose of the iterative arithmetic computation is 
to create organized lists or tables of mathematical data.  There is no calculation beyond 
the generation of the list.  However, an intriguing collection of texts, now part of the Yale 
Babylonian Collection, do go further.  These tablets were originally published by 
Neugebauer and Sachs in 1945 [15] and have now been re-published with photographs of 
the tablets and some additional examples by Nemet-Nejat [13].  They are all quite small 
(about 8cm on a side), squarish, and of the type that would typically contain some 
workings or computations for a single exercise.7  In the case of this collection, the tablets 
contain tables laying out data involving a sequence of reciprocals and their sum.   
 
A representative example is YBC 7234, the contents of which are given in Table 8.   
 

   2,51,30
1   1 1,10 1,10 
2 30     35 1,10 
3 20     23,20 1,10 
4 15     17,30 1,10 
5 12     14 1,10 
6 10     11,40 1,10 

Table 8: A reciprocal series 

Reading from left to right, the first column gives a sequence of numbers, . 
The second column contains the reciprocals, or perhaps more accurately inverses, of 
these numbers 

6,5,4,3,2,1=n

10,12,15,20,30,1=n .    The third column multiplies these entries by a 
common constant, , and the fourth column multiplies the first and third to act as a 
check, 

10,1=c
ccnn = .  The number at the top of the fourth column, here 2,51,30 is the sum of 

the entries in the third column.  That is, in modern notation, what is being computed is 

the series ∑=
6

1n

nc .   

 
Among the remaining texts, YBC 7354, YBC 7355, and YBC 11127 are the same except 
for having and 2 respectively.  YBC 7358 has 40,30=c 45=c , but n only goes up to 5. 
YBC 7235 has  and , but also includes some additional columns and 
computation.  Rather more intriguing are the pair of texts YBC 7353 and YBC 11125.  
Although the layout and computations are similar, in both of these cases, the numbers 
starting the problem are the sequence of popular irregular numbers 

4,3,1=n 40=c

14,13,11,7=n

11741,16 ××=
.  Since 

these numbers are irregular, they do not have finite sexagesimal reciprocals.  Instead, 
their inverses are taken with respect to the least common multiple .  So 13

                                                 
7 The relevant tablets are YBC 7234, YBC 7235, YBC 7353, YBC 7354, YBC 7355, YBC 7358, YBC 
11125 and YBC 11127. 

 



the inverse of 7 is 2,23, and so on.  The example of YBC 7353 is given in   Table 9.  The 
constant is and the total is the sum of the entries in the third column.  In YBC 
11125, the only difference is that there 

30=c
40=c .   

 
   3,11,15
7 2,23 1,11,30 8,20,30
11 1,31 45,30 8,20,30
13 1,17 38,30 8,20,30
14 1,11,30 35,45 8,20,30

  Table 9: Irregular numbers and inverses 

These texts contain only numbers, there is no explanation as to why these series are being 
computed, and a natural question is to ask what the exercises were for.  It has been 
suggested, most forcibly by Friberg [3: 547], but also by Neugebauer and Sachs [15: 18-
19], that these tables functioned as aids for solving ‘price-equivalency’ problems.  The 
idea is that the computations calculate the total cost of equal amounts a number of items 
of different prices (prices in Mesopotamia were usually quoted as ‘quantity per unit of 
silver’ (pounds per dollar) rather than our ‘cost per unit of quantity’ (dollars per pound)).  
However, this argument is based on one poorly-understood text, VAT 7530, and it seems 
more likely that the artificial word-problems were constructed to utilize the prior 
calculations.  The recent publication by Robson of another similar text from Nippur, N 
3914, in [16] makes the price-equivalency hypothesis even less plausible.  In N 3914, the 
sum runs from  to .  It is difficult to believe anyone would want to purchase 
equal quantities of a collection of goods with market rates that just happened to run from 
1 to 10.  Further, since is irregular, the inverses are all taken with respect to 7.  The 
table is reproduced in 

1=n 10=n

7=n
  Table 10.  In view especially of this additional new example, 

these tables should be seen as pure exercises in calculation with the sexagesimal system 
with the emphasis on computing with inverses.     
 

         3,25,1,40 

1 7 1,10 1,10 

2 3,30    35 1,10 

3 2,20    23,20 1,10 

4 1,45    17,30 1,10 

5 1,24    14  1,10 

6 1,10    11,40 1,10 

7 1    10 1,10 

8   52,30      8,45 1,10 

9   46,40      7,46,40 1,10 

10   42      7 1,10 

  Table 10: Inverse computations from Nippur 

 



 
Series in Word Problems 
 
While it is quite possible that the texts described above were pure exercises in 
computation, various sorts of series do turn up in the corpus of word problems.  There are 
problems involving arithmetic, geometric and more complicated types of sequences on a 
variety of topics.  Some of the problems are direct, some are inverse problems (given the 
sum of a sequence and some conditions, find the terms), some are spectacularly artificial, 
some are quite subtle, and, unfortunately, many are badly broken.  There are series 
problems on interest calculations and problems of inheritance involving division of silver 
or land between a number of claimants; there are problems involving workers carrying 
bricks and building ramps; there are questions on sizes of fields, and there are ‘broken 
reed’ problems. Below we give some representative examples of the genre. 
 
Division of Silver 
 
A classic series problem involves the division of an inheritance of silver between a 
number of brothers when the shares of the brothers follow a certain pattern.  While there 
is some evidence for a basis in reality of the ideas of division of property in varying 
shares, the details of the problems are quite artificial and can safely be viewed as 
mathematical exercises. The entire collection of inheritance problems was surveyed by 
Muroi [10].  The examples given below indicate some of the variety of these problems.  
As may be expected, both of these are inverse problems.  The total amount of silver to be 
divided between the brothers is known, and the problem is to find the share of each 
brother.  The terminology is often cryptic and the problems are underdetermined at first 
sight.  That is, crucial information, in particular the type of progression, is often not 
clearly stated.   
 
The first example is taken from YBC 9856, originally published by Neugebauer and 
Sachs in MCT  [15:99-100].  The tablet contains two problems, and both of them present 
serious difficulties in interpretation.  The first exercise is to do with some kind of work 
assignment, the second is to do with division of silver.  The translation given here is 
similar to that of Neugebauer and Sachs, despite the criticisms of Muroi [10].   
 1 mana of silver.  5 brothers.  As much as  
 the difference between two brothers is the share of the youngest. 
 Let brother exceed brother.   
The meaning is that 5 brothers share 1 mana or 1,0 = 60 gín of silver with ‘brother 
exceeding brother’ by a constant amount, i.e., in arithmetic progression.  The share of the 
youngest brother (that is, the smallest share) is equal to the difference between successive 
shares.  The text does not record how the problem was to be solved, but it does give the 
(correct) solution in the next line as a laconic set of numbers: 
 1   4   2   8   3   12   4   16   5   20. 
It is entirely possible that the problem was intended to be solved by a method of ‘false 
position’, since many other problems used this technique, and this approach would yield 

 



the solution very easily.  However, this is only speculation and should be treated 
cautiously.   
 
The second example is taken from Str 362, published by Neugebauer in MKT I [14: 239-
243].  The text contains six problems on a mixture of topics.  The first problem is the 
silver inheritance problem given below and is the only one for which a solution is given; 
next comes a very broken problem on price-equivalency; then there are two problems 
dealing with irregular reciprocals, an arithmetic sequence problem involving a broken 
reed (also given below) and another arithmetic sequence problem involving construction.   
 
The division of silver problem is a bit more sophisticated than the first example, and as in 
this case the solution procedure is also given, one can see how these types of problems 
were approached.  The problem is simply given, although there are some grave 
difficulties in understanding exactly how the procedure works.  The core of the difficulty 
is the line that essentially says ‘1 and 1 is 2’; a lot of trouble is glossed over by that 
‘essentially’.  The conditions of the problem are that 10 brothers share 1 絢 mana of silver 
(in arithmetic progression).  The share of the eighth brother is 6 gín.  The problem is to 
determine the difference between the shares of the brothers. It is worth thinking about 
how a modern mathematician might approach this problem before seeing the rather 
elegant, in fact, at first sight, downright mysterious, solution given in the text.  Note that 
1 絢 mana is 1,40 mana, or 100 gín.  Also, lines in the translation below correspond to 
grammatical or logical units, not lines of text on the tablet.    
 10 brothers.  1 2/3 mana of silver. 
 Brother exceeded brother, but how much he exceeded I do not know. 
 The share of the 8th was 6 gín.   

By how much did brother exceed brother? 
You in your proceeding, 
find the reciprocal of 10, the people: it gives 0;6. 
Raise 0;6 to 1 絢 mana of the silver: it gives 10. 
Double 10: it gives 20. 
Double 6, the share of the eighth: it gives 12. 
Subtract 12 from 20: it gives 8. 
Let your head hold 8. 
… and 1 below add: it gives 2. 
Double 2: it gives 4 
You add 1 to 4: it gives 5 
Subtract 5 from 10, the people: it gives 5. 
Find the reciprocal of 5: it gives 0;12. 
Multiply 0;12 by 8: it gives 1;36. 
1;36 is how much brother exceeds brother.  

 
Old Babylonian word problems typically conveyed the solution procedure via a 
paradigmatic example.  As here, each step of the procedure uses values arising from the 
statement of the problem and previous steps of the solution.  A convention is that 
wherever possible the results of one step are used in the immediately subsequent step.  

 



Where this is not possible, but the result will be needed later, the student is often told to 
remember the intermediate figure, as here, ‘let your head hold 8.’  Hence, this instruction 
indicates that the overall procedure breaks down into two subsections.   
 
Recall, the requirement is to find the difference between the shares of successive 
brothers.  The eldest brother gets the largest share, and each brother down the line gets a 
smaller share with a constant difference.  The first subsection of the problem finds the 
difference between twice the average share and twice the given brother’s share.  The 
average is found by dividing the total by the number of brothers, or, rather, multiplying 
by the reciprocal of them.  This number (10) is doubled; the share of the eighth brother is 
doubled and the difference found.   
 
For those who are more used to working in an algebraic language, let us give a 
translation.  Label the brothers’ shares by , with  being the smallest, and 

let d denote the (sought) constant difference.  The total 

110 ,,, −nbbb K 0b
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n
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0
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0
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=∑  is given.  
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)1(
0

−+= , and then twice the average, 

.  Now, if , the share of brother k, is given, we have , 

and so 

dnba )1(22 0 −+= kb kdbbk += 0
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)]12([

22)1(222 00 +−=
−−−+=−
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That is, the number 8 determined at the end of the subsection is a certain multiple of the 
constant difference.  The goal of the second subsection is to determine that multiple.   
 
The next line of the text is where the difficulty of interpreting the problem lies.  There is 
clearly something missing on the tablet, as the line begins ‘and 1’ and the following word 
means something like ‘lower’ or ‘below.’  In the case of this problem, the given share is 
that of the eighth brother, so 2810 =−=k , and this is easily found by counting down, or 
below, the given share to see how many steps there are, 1 and 1.8  Next, the two steps are 
doubled, 1 is added and the total subtracted from n, the number of brothers.  That is, the 
factor  has been computed.  The 8 that was previously remembered is now 
divided by the number obtained and so the problem is solved for d, the amount brother 
exceeds brother.  There is nothing in the procedure that could not be applied equally well 
with other given data.  Quite how these problems were envisioned in the Old Babylonian 
period is unclear, but there was some quite sophisticated reasoning at work. 

)12( +− kn

 
Broken Reed problems 
 
In this section we present two ‘broken reed’ problems.  The broken reed was a staple of 
Old Babylonian mathematics.  The reed was used to take some measurement, but pieces 
                                                 
8 Neugebauer [14, I: 241] and Thureau-Dangin [23: 83], both with a certain uneasiness, proposed a more 
complicated procedure involving symmetry and shares above and below.   

 



fell off, complicating the result.  Generally, the problem was either to find the original 
length of the reed (an inverse problem) or determine the total distance covered (a direct 
problem).  Not all broken reed problems involve sequences, they were pressed into 
service for a variety of problems.  See [11: 73-75; 84-86] for brief summaries of these 
problems.   
 
The first problem below is taken from Str 362, the same text as the second division of 
silver problem above.  As noted there, only the statement of the problem is recorded, not 
the solution procedure.  Although the text of the problem is only four lines long, there are 
some difficulties in reading.  Here, we follow Thureau-Dangin’s later interpretation 
[22,23] against Neugebauer’s initial reading [14], which led him to propose a geometrical 
series.   
 A reed: 1 kùš. 

1 šu-si fell off each time until it was all gone. 
How far did I go? 
I went 1 nindan 3 ½ kùš. 

 
The units involved are the kùš, or cubit of 30 šu-si (fingers) and the nindan of 12 kùš.  
The sense of the problem is that one begins with a (measuring) reed of 1 kùš length and 
each time a measurement is taken, 1 šu-si breaks off the reed.  The procedure is repeated 
until the reed has reduced to zero, and the total distance measured is desired.  In modern 

notation, what is required is to find the sum (in šu-si) , although the solution is 

given in proper metrological units.  Since no details of the solution procedure are given, it 
is impossible to know how the sum was found – perhaps it was just a tedious addition 
problem, although the numbers are so carefully chosen that it is hard to resist feeling that 
a more elegant technique was applied.  

∑= −30

0

)30(
i

i

 
The second example of a broken reed sequence problem is taken from AO 6770.  This 
tablet, possibly originally from Larsa, contains five assorted problems: a rectangle 
problem; a problem involving interest on grain; a problem on finding the original weight 
of a stone; the volume of bitumen needed to cover a give area, and lastly, a broken reed 
problem.  Unfortunately, it is not only the reed that is broken; the tablet is, too.  The 
statement of the problem can be fairly well restored, but the solution procedure breaks off 
after a few lines.  As this is an inverse problem, the loss of understanding of how it was 
approached is particularly frustrating.  Allowing for some uncertainties in the readings of 
the last couple of lines, the problem goes as follows: 

I took a reed. 
1 šu-si fell off each time. 
When it was all gone: 4 kùš. 
What was the original length of the reed? 
The original length of the reed was ½ kùš. 
Find the coefficient of the šu-si.  Multiply it by 4 kùš. 
Double it.   
1, the projection, break in half(?) …… 

 



 
The problem itself is clear.  A reed of unknown length has a finger-length (šu-si) fall off 
each time a measurement is taken.  When the reed is completely used up, the total 
distance measured is 4 kùš.  Find the original length of the reed.  In modern terminology, 

the goal is to solve (converting the given length into šu-si)  for n.  The 

first thing that is unusual about this text is that the solution is stated, and then a procedure 
is given.  The normal practice is to work through the procedure until the solution is given 
at the end.  However, AO 6770 is a very unusual text in many ways: the first problem is 
one of the rare instances where a general procedure is given instead of a paradigmatic 
example.   
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In the case of the problem above, it appears that the first step towards a solution is a 
scaling to convert the given distance of 4 kùš into units of šu-si.  The result is then 
doubled.  Next, the wasitum, or projection is taken (and probably broken in half).   The 
term wasitum is quite rare in Old Babylonian mathematics, occurring on only four 
tablets9, but Høyrup [6] has argued that the term functions as a physical projection, 
always of magnitude 1, usually from a square.  It converts lengths into rectangles so they 
may be ‘added’ to areas.  As Høyrup puts it, it is ‘the width of 1 which transforms a 
length into an area of equal magnitude.’ [6: 298]  The use of the wasitum is critical in 
Høyrup’s ‘cut-and-paste’ view of Old Babylonian mathematics.  The presence of the term 
here implies that a quadratic problem is being set up to be solved by the standard 
completing-the-square procedure (see, for example the discussion in [8] of BM 13901, 
and the comments below).  That in turn implies that the problem is being viewed as an 
area or quadratic problem, rather than a linear one.  When put together with the doubling 
of the previous step, it is hard to avoid the conclusion that this text provides strong 
evidence for an awareness of the closed-form formula for the sum of consecutive 

integers, that is, 
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Solving a problem by false position 
 
The last example is taken from BM 13901 and shows one way in which false position 
could be used to solve a simple series problem.  BM 13901 was first published by 
Thureau-Dangin in 1936 [21] and re-edited by Neugebauer in MKT [14].  The text 
contains a collection of twenty-four problems to do with sides and areas of squares or 
square fields.  The text has been much studied and discussed as it is the classic example 
for illustrating Høyrup’s geometric view of Old Babylonian mathematics.  Høyrup has 
discussed the text many times, included several of the problems in his recent book [8] 
summarizing his approach and gave a complete new translation in [7].  The first problem 
is the famous one beginning, “The area and the side of my square I added…” [9] and 

                                                 
9 The others are BM 13901, VAT 8391 and VAT 8528. 

 



showing the simple cut-and-paste procedure for solving the resulting problem. Although 
all the problems on the tablet are to do with squares, the problem below, Number 15, 
does not need the cut-and-paste techniques, showing the more arithmetical origin of these 
kinds of problems.   
 
 I have added the areas of my four squares: 0;27,5. 

The side, two-thirds, a half, a third of the side. 
You inscribe 1 and 0;40 and 0;30 and 0;20. 
1 and 1 you multiply: 1. 
0;40 and 0;40 you multiply: 0;26,40. 
0;30 and 0;30 you multiply: 0;15. 
0;20 and 0;20 you multiply: 0;6,40. 
0;6,40 and 0;15 and 0;26,40 and 1 you add: 1;48,20. 
The reciprocal of 1;48,20 is not detached. 
What do I multiply 1;48,20 by to get 0;27,5: 0;15. 
0;30 is the square root of 0;15. 
Multiply 0;30 by 1: 0;30 is the first square-side. 
Multiply 0;30 by 0;40: 0;20 is the second square-side. 
Multiply 0;30 by 0;30: 0;15 is the third square-side. 
Multiply 0;30 by 0;20: 0;10 is the fourth square-side. 

 
The total area of the four squares is known and the ratios of the sides of the squares is 
known, that is, the sides form a descending sequence of the side of the largest square, 
then two-thirds, half and one third of the large side.  The procedure is as follows.  Set the 
side of the largest square to be 1.  Then the sides of the other squares are 0;40, 0;30 and 
0;15 respectively.  Next, determine the sum of the areas of squares of these sides: 
1;48,20.  To get the ratio of this ‘false’ area to the actual one, you need to divide by the 
false area, but the reciprocal of 1;48,20 does not exist (the number is irregular; it is 
divisible by 13).   Instead, the text uses the standard strategy for irregular numbers, 
determining directly the factor, in this case 0;15.  If the ratio of the areas is 0;15, the ratio 
of the sides is the square root of that, or 0;30.  The final step is to multiply each of the 
‘false’ sides by the factor 0;30 to get the correct sides.   
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