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In a vice-presidential address before 
Section A of the American Association for 
the Advancement of Science just six 

years ago, I made a somewhat detailed 

survey1 of our knowledge of Egyptian and 

Babylonian Mathematics before the 
Greeks. This survey set forth consider 
able material not then found in any gen 
eral history of mathematics. During the 
six years since that time announcements 
of new discoveries in connection with 

Egyptian mathematics have been com 

paratively insignificant, and all known 
documents have probably been more or 

less definitively studied and interpreted. 
But the case of Babylonian mathematics 
is entirely different; most extraordinary 
discoveries have been made concerning 
their knowledge and use of algebra four 
thousand years ago. So far as anything 
in print is concerned, nothing of the kind 

was suspected even as late as 1928. Most 
of these recent discoveries have been due 
to the brilliant and able young Austrian 
scholar Otto Neugebauer who now at the 

age of 36 has a truly remarkable record of 
achievement during the past decade. It 

1 "Mathematics before the Greeks," Science, 
n.s. v. 71, 31 Jan. 1930, p. 109-121. 

was only in 1926 that he received his 
doctor's degree in mathematics at G?t 

tingen, for an interesting piece of research 
in Egyptian mathematics; but very soon 

he had taken up the study of Babylonian 
cuneiform writing. He acquired a mastery 
of book and periodical literature of the 

past fifty years, dealing with Sumerian, 

Akkadian, Babylonian, and Assyrian 
grammar, literature, metrology, and in 

scriptions; he discovered mathematical 

terminology, and translations the accu 

racy of which he thoroughly proved. He 
scoured museums of Europe and America 
for all possible mathematical texts, and 
translated and interpreted them. By 1929 
he had founded periodicals called Quellen 
und Studien zur Geschichte der Mathematik2 
and from the first, the latter contained 
remarkable new information concerning 
Babylonian mathematics. A trip to Russia 
resulted in securing for the Quellen sec 

tion, Struve's edition of the first com 

plete publication of the Golenishchev 
mathematical papyrus of about 1850 B.C. 
The third and latest volume of the Quellen, 
appearing only about three months ago, 

2 I shall later refer to the two periodicals 
simply by the words Quellen, and Studien. 

* 
Delivered at a joint meeting of The National Council of Teachers of Mathematics, The 

American Mathematical Society, and The Mathematical Association of America, at St. Louis, Mo., 
on January 1, 1936. 
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210 THE MATHEMATICS TEACHER 

is a monumental work by Neugebauer 
himself, the first part containing over five 
hundred pages of text, and the second part 
in large quarto format, with over 60 pages 
of text and about 70 plates. This work was 

designed to discuss most known texts 
in mathematics and mathematical astron 

omy in cuneiform writing. And thus we 
find that by far the largest number of such 
tablets is in the Museum of Antiquities at 

Istanbul, that the State Museum in 
Berlin made the next larger contribution, 
Yale University next, then the British 

Museum, and the University of Jena, fol 
lowed by the University of Pennsylvania, 

where Hilprecht, some thirty years ago, 
published a work containing some mathe 
matical tables. In the Museum of the 
Louvre are 16 tablets; and then there are 
less than 8 in each of the following: the 

Strasbourg University and Library, the 
Mus?e Royaux du Cinquantenaire in 

Brussels, the J. Pierpont Morgan Library 
Collection (temporarily deposited at Yale) 
the Royal Ontario Museum of Archae 

ology at Toronto, the Ashmolean Museum 
at Oxford, and the B?hl collection at 

Leyden. Most of the tablets thus referred 
to date from the period 2000 to 1200 B.C. 
It is a satisfaction to us to know that the 

composition of this wonderful reference 
work was in part made possible by The 
Rockefeller Foundation. Some two years 
ago it cooperated in enabling Neugebauer 
to transfer his work to the Mathematical 
Institute of the University of Copenhagen, 
after Nazi intolerance had rendered it 

impossible to preserve his self respect 
while pursuing the intellectual life. This 
new position offered the opportunity for 

lecturing on the History of Ancient Math 
ematical Science. The first volume of these 

lectures,3 on " 
Mathematics before the 

Greeks/' was published last year, and in 
it are many references to results, the exact 

setting of which are only found in his great 
source work referred to a moment ago. 
In these two works, then, we find not only 
a summing up of Neugebauer's wholly 
original work, but also a critical summary 
of the work of other scholars such as 

Frank, Gadd, Genouillac, Hilprecht, Le 

normant, Rawlinson, Thureau-Dangin, 

Weidner, Zimmern, and many others.4 
Hence my selection of material to be pre 
sented to you to-night will be mainly 
from these two works. Before turning to 
this it may not be wholly inappropriate 
to interpolate one remark regarding Neuge 
bauer's service to mathematics in general. 
Since 1931 his notable organizing ability 
has been partially occupied in editing and 

directing two other periodicals, (1) Zen 
tralblatt f?r Mathematik (of which 11 
volumes have already appeared), and (2) 
Zentralblatt f?r Mechanik, (3, volumes)? 
a job which of itself would keep many a 

person fully employed. Mais, revenons ? 
nos moutons! 

From about 3500 to 2500 years before 

Christ, in the country north of the Persian 
Gulf between the Tigris and Euphrates 
Rivers, the non-semitic Sumerians, south 
of the Semitic Akkadians, were generally 
predominant in Babylonia. By 2000 B.C. 

they were absorbed in a larger political 
group. One of the greatest of the Sumerian 
inventions was the adoption of cunei 
form script; notable engineering works 
of the Babylonians, by means of which 
marshes were drained and the overflow 
of the rivers regulated by canals, went 
back to Sumerian times, like also a con 

siderable part of their religion and law, 
and their system of mathematics, except, 
possibly, for certain details. As to mathe 
matical transactions we find that long 
before coins were in use the custom of 

paying interest for the loan of produce, or 
of a certain weight of a precious metal, 

3 
Vorlesungen ?ber Geschichte der antiken math 

ematischen Wissenschaften, v. 1, Vorgriechische 
Mathematik (Die Grundlehren der mathemat 
ischen Wissenschaften, v. 43), Berlin, 1934. Ref 
erence to this work will later be made simply by 
the word Vorlesungen. 

4 For the literature of Babylonian mathe 
matics prior to 1929, see my Bibliography in the 

Chace-Manning-Bull edition of the Rhind 
Mathematical Papyrus, v. 2; for later items see 
K. VogePs bibliography in Bayer. Bl?tter /. d. 

Gymnasialschulwesen, v. 71, 1935, p. 16-29. 
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BABYLONIAN MATHEMATICS AND RECENT DISCOVERIES 211 

was common. Sumerian tablets indicate 
that the rate of interest varied from 20 per 
cent t? 30 per cent, the higher rate being 
charged for produce. At a later period the 
rate was 5| per cent to 25 per cent for 

metal and 20 per cent to 33? per cent for 

produce.5 An extraordinary number of 
tablets show that the Sumerian merchant 
of 2500 B.C. was familiar with such things 
as weights and measures, bills, receipts, 
notes and accounts. 

Sumerian mathematics was essentially 
sexagesimal and while a special symbol for 
10 was constantly used it occupied a sub 
ordinate position; there were no special 
symbols for 100 or for 1000. One hundred 
was thought of as 60+40 and 1000 as 
16 -60+40. But in these cases the Sumerian 

would write simply 1,40 and 16,40; 

<YY?W?<YYY 
= 12 X 602+25 X 60+33 = 44733. Hence 
the Sumerians had a relative positional no 
tation for the numbers. The word cunei 
form means wedgeshaped and the numbers 
from one to nine were denoted by the cor 

responding number of wedges, where the 

Egyptian simply employed strokes. For 

10, as we have seen, an angle-shaped sign 
was used. Practically all other integers 
were made up of combinations of these in 
various ways. There is great ambiguity 
because, for example, a single upright 
wedge may stand for 1 or 60 or any posi 
tive or negative integral multiple of 60. 

Hence there was a special sign D for 60; 
? or ? or "fc for 600, the last of which 
suggests 60X10; O for 3600; and ? for 
36000, again suggesting a product. No 

special sign for zero in Sumerian times, 
other than an empty space, has yet been 
discovered. But by the time of the Greeks 

<YYi?< YYY =12X60? 
5 M. Jastrow, Jr., The Civilization of Baby 

lonia and Assyria, Philadelphia, 1915, p. 326, 
338; C. H. W. Johns, Babylonian and Assyrian 
Laws, Contracts and Letters, New York, 1904, p. 
251, 255-256. See also D. E. Smith, History of 

Mathematics, vol. 2, 1925, p. 560. 

+0+33 = 43233, the sign being for 
zero. But to matters of numeral notation 
we shall make no further reference, except 
to remark that the Babylonians thought 
of any positive integer a=^cn60n, and in 

the form 

a= ? ? ? 
C2CiCoC_iC_2 

? ? ? . 

This may not, of course, correspond to 

what we call integers. By means of nega 
tive values of n, fractions were introduced. 

Babylonian multiplication tables are 

very numerous and are often the products 
of a certain number, successively, by 1, 2, 
3 ? ? ? 

20, then 30, 40 and 50. For example, 
on tablets of about 1500 B.C. at Brussels 
are tables of 7, 10, 12J, 16, 24, each multi 

plied into such a series of numbers. There 
are various tablets giving the squares of 

numbers from 1 to 50, and also the cubes, 
square roots and cube roots of numbers. 
But we must be careful not to assume too 
much from this statement; the tables of 

square roots and cube roots were really 

exactly the same as tables of squares and 

cubes, but differently expressed. In the 

period we are considering the Egyptian 
really had nothing to correspond to any 
of these tables, nor do we know that even 

the conception of cube root was within 
his ken. Until two years ago it was a com 

plete mystery why the Babylonians had 
tables of cubes and cube roots, but finally 
a tablet in the Berlin Museum gave a 

clue. This is a table of n3+n2, for = 1 to 

30. Certain problems on British Museum 
tablets were found to lead to cubic equa 
tions of the form (uxY+(ux)2 

= 252. 
Hence Neugebauer reasoned in his article 
of 1933 in the G?ttingen Nachrichten that 

the purpose of the tablet in question was 

to solve cubic equations in this "normal 

form." He contended that it was within 

the power of the Babylonians, by a linear 

transformation z = x+c, to reduce a four 

term cubic equation 3+a 2+a2 +a = 0 

to 23+?iz2+?2 = 0. Multiplying this equa 
tion by 1/bi3 we have at once (on set 

ting z = b\w, and a=?&2/&13) the normal 

form 
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212 THE MATHEMATICS TEACHER 

w*+w2 
= a. 

Neugebauer's theory as to the possibility 
of such a reduction is in part based on 

problems to which I shall later refer. Up 
to the present, however, Neugebauer has 
found no four-term cubic equation solved 
in this way. And indeed in these same Brit 
ish Museum tablets are two problems 
which lead naturally to such equations 
but are solved by a different method.6 

Neugebauer feels that tables are the 

foundation of all discussion of Babylonian 
mathematics y that more tables, such as the 
one to which we have just referred, are 

likely to be discovered, and to illuminate 
other mathematical operations. There are 

many tables of parallel columns of inte 

gers such as 

which is nothing but a table of reciprocals 
l/n 

= ? in the sexagesimal system, n ? is 

always equal to 60 raised to 0, or some 

positive or negative integral power. It is 
notable that in the succession of numbers 

chosen, the divisor = 7 does not appear, 
the reason being that there is no integer ? 
such that the product is the power of 60 
indicated. Hence every divisor, a, with a 

corresponding ? must be of the form 
a = 2a'3? . All such reciprocals are 
called regular; and such reciprocals as of 
7 and 11 irregular.7 When irregular num 
bers appear in tables the statement is 
made that they do not divide. 

Some of these tables are extraordinary 
in their complexity and extent. One tablet 
in the Louvre, dating from about the 

2 
3 
4 
5 
6 
8 
9 

30 
20 
15 
12 
10 

7, 30 
6, 40 

6 
Compare G?ttingen, Nachrichten, Math. 

phys. KL, 1933, p. 319; also K. Danske Viden 
skabernes Selskab, Mathem.-fysiske Meddelelser, 
v. 12, no. 13, p. 9. Also Quellen, v. 3, part 1, 
p. 200-201, 210-211. 

7 It is easy to approximate to 1/7, e.g. 
7/28 = ; 8, 45; 13/90 = ; 8, 40, etc., but there is 
no case known where this was done. 

time of Archimedes, has nearly 250 re 

ciprocals of numbers many of them six 

place, and some seven. For example, here 
is the second last entry for a six-place 
number:8 2, 59, 21, 40, 48, 54 20, 4, 
16, 22, 28, 44, 14, 57, 40, 4, 56, 17, 46, 40 
that is, the product of (2X605+59X604 
+ ? ? ? 

+54) X (20X6013+4X6012H 
+40)=6019. 

The object of a table of reciprocals is to 
reduce division to multiplication since 

b/a equals b multiplied by the reciprocal 
of a. 

I referred a few moments ago to one 

figure tables of squares (that is, the squares 
of numbers from 1 to 60). In a tablet of 
the Ashmolean Museum at Oxford is the 

only example at present known of a two 

figure table of squares.9 This dates from 
about 500 B.C. The tablet is of further 
interest from the fact that on it are several 

examples of the sign for zero, e.g. 

(15, 30)2 
= 

4, 
? , 15 

(39, 30)2 
= 

26, ,15. 

The latter is equivalent to 23702 
= 

5,616,900 
Among table-texts are also certain ones 

involving exponentials. From Neuge 
bauer's volume of Lectures we may easily 
gain the impression10 that these are tables 
for cn, n = l to 10, for c = 9, c 

= 
16, c 

= 
100, 

and c = 225. On turning, however, to his 
work published three months ago we find 
that the tables in question are on Istanbul 

tablets, which are in very bad condition, 
so that for c = 16 there is not a single com 

plete result ; for c = 9 there are only three 

complete results, and similarly for the 
others. Enough is present however to 
show that the original was probably at 
one time as described. 

One use of such tablets is in solving 
problems of compound interest. For ex 

ample in a Louvre text dating back to 

8 
Quellen, v. 3, part 1, p. 22. 

9 
Quellen, v. 3, part 1, p. 72-73 and part 2, 

plate 34. 
10 

Vorlesungen, p. 201; Quellen, v. 3, part 1, 
p. 77-79 and part 2, plate 42. 
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BABYLONIAN MATHEMATICS AND RECENT DISCOVERIES 213 

2000 . C. is a question as to how long it 
would take for a certain sum of money to 
double itself at 20% interest.11 The prob 
lem here, then, is to find in the equation 

(1; 12)* 
= 2. 

The answer given is 4-0; 2, 33, 20 = 3; 

57, 26, 40 years, not so very different from 

the more accurate result 3; 48. That is, 
from (1; 12)4 = 2; 4, 24, 57, 36 4 was found 
too large, giving a quantity greater than 2. 

How the amount to subtract was dis 
covered is not indicated in the text, and 
can not now be surmised. This is a con 

spicuous example of a solution by the 

Babylonians of an equation of the type 
ax = b where was not integral. 

Both in the Berlin Museum and in Yale 

University are tablets with other prob 
lems in compound interest. If for no other 
reason than to point out that five-year 
plans are not wholly a modern invention 
I may refer to a problem in a Berlin papy 
rus, the transcription and discussion of 
which occupies 16 pages of Neugebauer's 
new book.12 As yet I have not mastered all 
the discussion of this problem, but certain 
facts can be stated with assurance. There 
is a very curious combination of simple 
and compound interest which is naturally 
suggestive of what may have been custo 

mary in old Babylonia. If is an amount 
of principal, r is the rate of interest per 
year (here 20%), and we suppose that 

through a five-year period accumulates 
at simple interest it will amount to 2P at 
the end of the first five-year period. This 
amount 2P is then put at interest in the 
same way for a second five-year period 
and the principal is again doubled to 22P. 
The amount of capital at the end of any 
year is therefore given by the formula 

A=2nP(l+rm) 

where 0^m<5, and is the number of 

five-year periods. One of the problems is: 
How many five-year periods will it take 

for a given principal to become a given 
sum A? The particular case when m = 0 

gives us the equation A =2nP. In modern 
notation n = log2 A/P. Now Neugebauer 
suggests as a possible theory in explana 
tion of the text that something equivalent 
to logarithms to the base 2 was here used. 
In the problem P = 

l, A = 1,4 whence 
= 6. 

Two other suggestive problems of the 

Babylonians, involving powers of numbers 
are in a Louvre tablet of about the time of 
Archimedes.13 We have here 10 terms of a 

geometric series in which the first term is 

l,and 2 the constant multiplier;the sum is 

given correctly, 
9 

]T2i 
= l+2+22+ 

- ? ? 
+29 = 1023. 

?=o 

But what is of special interest is the ap 
parent suggestion as to how this number 
1023 was obtained. On the tablet it is 
stated that it is the sum of 511 =29 ? 

1, 
and 512 = 29. That is 

1023 = 
29+29-l 

= 2-29-l=210-l. 

Does this imply a knowledge of Euclid's 
formula leading to the sum of the ten 
terms of the geometric progression as, 
(210-l)/(2-l)? 

On the same tablet is the following 

11+2-2+ ? ? ? +1010 
= 

(11/3 + 10? 2/3) 
? 55 = 385. 

That Is, we have the sum of the squares of 
the first 10 integers, and this sum is the 

product of two integers, one of which is 

55, the sum of the first 10 integers. In 

general terms this relation may be stated 

?> 
= 

(l-l/3+7*.2/3)?>'. 
?=1 ?=-1 

Now if we set ]C? = |n(n+l), a formula 
t=l 

known to the Pythagoreans, we have 

??2=|n(n+l)(2n+l). This formula is 

practically equivalent to one known to 

Archimedes. 
11 

Quellen, v. 3, part 2, p. 37-38, 40-41. 
12 

Quellen, v. 3, part 1, p. 351-367, and part 
2, plates 29, 32, 54, 56, 57; Vorlesungen, p. 197 
199. 

13 
Quellen, v. 3; part 1, p. 96-97, 102-103 and 

part 2, plate 1; Studien, v. 2, 1932, p. 302-303. 
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Turning back to tables for a moment 
one finds a word for subtraction, lai; 19 is 
20 lai 1, 37 is 40 lai 3; a lai b = a-b. 

Neugebauer refers to a late astronomical 
text in which before each of 12 numbers 
the words tab and lai (plus and minus)14 
are placed, suggesting the arrangements of 

points above and below a line which lie on 
a wave-shaped curve. This seems extra 

ordinary. Neugebauer promised more 

about the matter in the third volume of 
his Lectures which is to deal with mathe 
matical astronomy. 

It is also a matter of great historical 
interest that, in at least three different 

problems in simultaneous equations in 
two unknowns, negative numbers occur as 

members. These examples are in Yale 

University texts,15 and it is very note 

worthy that such conceptions were not 
current in Europe, even 2500 years later. 

As a point of departure for certain other 

things let us now consider some geomet 
rical results known to the Babylonians. 
There will of course be no misunderstand 

ing when I state general results. These 

simply indicate operations used in many 
numerical problems of the Babylonians. 

1. The area of a rectangle is the product 
of the lengths of two adjacent sides. 

2. The area of a right triangle is equal 
to one half the product of the lengths of 
the sides about the right angle. 

3. The sides about corresponding angles 
of two similar right triangles are propor 
tional. 

4. The area of a trapezoid with one side 

perpendicular to the parallel sides is one 
half the product of the length of this per 
pendicular and the sum of the lengths of 
the parallel sides. 

5. The perpendicular from the vertex 
of an isosceles triangle on the base, bisects 
the base. The area of the triangle is the 

product of the lengths of the altitude and 
half the base.16 Indeed the Babylonians 

would probably think of the area of a 

triangle, other than right or isosceles, as 

the product of the lengths of its base and 

altitude?an easy deduction from two 

adjacent, or overlapping, right triangles. 
A large rectilineal area portrayed in a 

Tello tablet, in the Museum at Istanbul,17 
was calculated by dividing it up into 15 

parts: 7 right triangles, 4 rectangles (ap 

proximately), and 4 trapezoids. 
6. The angle in a semicircle is a right 

angle, a result till recently first attributed 
to Tha?es of Miletus, who flourished 1500 

years later. 

7. 7T = 
3, and the area of a circle equals 

one twelfth of the square of the length of 

its circumference (which is correct if 
7 = 3). A=7 2=(27 )2/4 

. 

8. The Pythagorean theorem, a result 

entirely unknown to the Egyptian.18 
9. The volume of a rectangular parallelo 

piped is the product of the lengths of its 

three dimensions, and the volume of a 

right prism with a trapezoidal base is 

equal to the area of the base times the 

altitude of the prism. Such a volume as 

the latter would be considered in estimat 

ing the amount of earth dug in a section 
of a canal. In a British Museum tablet the 
volume of a solid equivalent to that cut 

14 
Vorlesungen, p. 18. 

15 
Quellen, v. 3, part 1, p. 387, 440, 447, 455, 

456, 463, 470, 474; and part 2, plates 23, 48, 59. 
16 

Quellen, v. 3, part 2, p. 43, 46-47, 50-51, 
and part 1, p. 97, 104. 

17 A. Eisenlohr, Ein altbabylonischer Feld 

plan, Leipzig, 1896. J. Oppert, Acad?mie d. 

Inscriptions et Belles-Lettres, Comptes Rendus 
s. 4, v. 24, 1896, p. 331-348; also in Revue d'As 

syriologie et d'Arch?ologie Orientale, v. 4, 1897, 
p. 28-33. F. Thureau-Dangin, Revue dAssyri 
ologie, v. 4, 1897, p. 13-27. 

18 After many mistatements by mathemat 
ical historians it was an Egyptologist, the late 
T. E. Peet, in his Rhind Mathematical Papyrus 

(London, 1923, p. 31-32) who brought out the 
fact that there is not one scrap of evidence that 

the Egyptians knew the Pythagorean theorem, 
even in the simple 3-4-5 case. He gave also 

interesting new information about the harpe 

donaptai, or rope stretchers, referred to by 
Democritus. It is of course true that there are 

problems involving the relations of such num 

bers as 8, 6, and 10, as in Berlin Papyrus 6619 

(about 1850 B. C): Distribute 100 square ells 
between two squares whose sides are in the ratio 
1 to f. The same equations arise in problem 6 of 

the Golenishev papyrus: Given that the area 

of a rectangle is 12 arurae and the ratio of the 

lengths of the sides 1 :i \, find the sides; see also 
the Kahun papri, ed. by Griffith (1898). 
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off from a rectangular parallelopiped by a 

plane through a pair of opposite edges is 

given correctly as half that of the paral 
lelopiped.19 

10. The volume of a right circular cylin 
der is the area of its base times its altitude. 

11. The volume of the frustrum of a cone 

is equal to its altitude multiplied by the 
area of its median cross-section.20 

12. The volume of the frustrum of a 

cone, or of a square pyramid, is equal to 
one-half its altitude multiplied by the 
sums of the areas of its bases. [Contrast 
this approximation to the volume of a 

frustrum of a square pyramid with the 
exact formula known to the Egyptians of 
1850 B. C, V = %h(al2+a1a2+a22), where 

ah a2 are the lengths of sides of the square 

bases, and h the distance between them.] 
On the other hand Neugebauer believes 
that the Babylonians also had an exact 
value for the volume of the frustrum of a 

square pyramid, namely21 

concerning the second term there has been 
more than one discussion. 

Practically all of these results are in 

British Museum texts of 2000 B. C. 
That the Pythagorean theorem was 

known to the Babylonians of 2000 B. C. is 
certain from the following problems of a 

British Museum text:22 (1) To calculate 
the length of a chord of a circle from its 

sagitta and the circumference of the circle ; 
and (2) To calculate the length of the sa 

gitta from the chord of a circle, and its 
circumference. If c be the length of the 

chord, a of its sagitta and d of the diameter 

(one-third of the circumference) of the 

circle, the formulae used are evidently 

c = V~[d2-(d-2a)2] 

a = ?[d-V(d2-c2)]. 

Now every step of the numerical work is 

equivalent to substitution in these for 
mulae. 

The same is true of the following prob 
lem in another British Museum tablet.23 

A beam of given length I was originally 
upright against a vertical wall but the 

upper end has slipped down a given dis 
tance h, what is the distance d of the other 
end from the wall? Each step is equiv 
alent to substitution in the formula 

d = \/[l2-(l-h)2] 
and then follows the converse problem, 
given I and d to find h, 

h^-y/T^d2. 

In these problems a, c, d, , and I are all 

integers. 

A third problem involving the use of the 

Pythagorean theorem is one on a Louvre 
tablet of the Alexandrine period:24 Given 
in a rectangle that the sum of two adjacent 
sides and the diagonal is 40 and that the 

product of the sides is 120. The sides are 

found to be 15 and 8 and the diagonal 17. 
There are, however, various problems in 

Babylonian mathematics where square 
roots of non-square numbers, such as 1700, 
are discussed. In this particular case the 

problem, on an Akkadian tablet of about 
2000 B.C., is to find the length of the di 

agonal of a rectangle whose^sides are ;40 
and ;10. It is worked out twice, as if by 
two approximation formulae.25 If the 

lengths of the diagonal and sides of a rec 

tangle are respectively d, a, and b, 
d = \/(a2+b2) and the approximation for 

mulae are: 

19 
Quellen, v. 3, part 2, p. 43, 47, 52. 

20 
Studien, v. 1, 1929, p. 86-87; Vorlesungen, 

p. 171; Quellen, v. 3, part 1, p. 176. 
21 

Studien, v. 2, 1933, p. 348-350; ForZe 

sungen, p. 171; Quellen, v. 3, part 1, p. 150, 162, 
187-188. Heron of Alexandria (second century 
A. D.?) found the volume of such a pyramid, for 
which a = 

10, a2=2, h =7 (Heronis Alexandrini 

Opera quae supersunt omnia, Leipzig, v. 5, 1914, 
p. 30-35), every step being equivalent to sub 

stituting in this formula. 
22 

Studien, v. 1, 1929, p. 90-92. 

23 
Quellen, v. 3, part 2, p. 53. 

24 
Studien, v. 2, 1932, p. 294;> Quellen, v. 3, 

part 1, p. 104. 
25 

Studien, v. 2, 1932, p. 291-294; Vorles 

ungen, p. 33-36; Quellen, v. 3, part 1, p. 279-280, 

282, 286-287, and part 2, plates 17, 44. 
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(1) 

(2) d = a+2ab\ 

The first of these is equivalent to the one 

employed several times, two thousand years 

later, by Heron of Alexandria, in his Met 
rica. 

On the other hand the dimensions of the 
second formula are incorrect. After con 

siderable calculation Neugebauer shows 
that a correct and good approximation to 
d is given by the following 

2ab2 
(3) d = a+ 

2a2+62 

Since, in the particular problem in ques 
tion, l/(2a2+?2) 

= 
12/11 that is, almost 

unity, Neugebauer has surmised that the 

equivalent of this third formula may have 
been used. 

The Heron approximation formula was 

also used by the Babylonians to find26 

1^ for /2 and 17/24 for l/y/2. 
In a British Museum text of about 2000 

B. C. there is an interesting attempt to 

approximate \/2f by a step equivalent to 
that of seeking the solutions of the Dio 

phantine equation27 y2+22%=x2. When 
= 

5, y = \/2%. The values y = If, x = b\ 
are found in the text. One readily finds 
also y = If ,x = 4f so that the required y is 
between If and If. Babylonian tables of 

squares might well give much closer ap 
proximations. 

U 

/ 
? / 
1/ 

Two of the geometrical theorems re 

ferred to, a few moments ago, are em 

ployed in the solution of the following 
problem of a Strasbourg tablet:28 Consider 
two adjacent trapezoide, sections of the 
same right triangle and with a common 

side of length c as in the figure. The upper 
area of height hu (between u and c) is 

given as 783; the lower area of height ht 

(between c and I) is 1377. It is further 

given that 

(1) hi = 3hu 
(2) u-c = 36 

Then by applying the theorems mentioned 

u+c 
(3) 

/iw--^- 

= 783 

c+l 
(4) hi-=1377 

2 

(5) u-c=(l/3)(c-l) 
five equations from which the five un 

known quantities are found. 
There are many similar problems, one, 

of a group, leading to ten equations in 
ten unknowns. This is in connection with 
the division of a right triangle (by lines 

parallel to a side) into six areas of equal 
altitudes, while their areas are in arith 
metic progression.29 This problem seems 

to show mathematics studied for its own 

sake, just as problem 40 of the Rhind 

papyrus suggested a similar thought there. 
Consider now another Strasbourg prob 

lem, of a different type, leading to a quad 
ratic equation:30 The sum of the areas of 
two squares is a given area. The length (y) 
of the side of one square exceeds a given 
ratio (a/?) of the length (x) of the side 
of the other square, by a quantity d. The 

problem is to find and y. Here 

x2+y2 
= 

A, 
a 

y 
=? x ? d. 

? 

28 
Studien, v. 2, 1932, p. 294-295; Vorlesungen, 

p. 37; Quellen, v. 3, part 1, p. 100, 104, and part 
2, plate 1. 

27 
Studien, v. 2, 1932, p. 295-297, 309; 

Quellen, v. 3, part 1, p. 172. 

28 
Studien, v. 1, 1929, p. 67-74; Quellen, v. 3, 

part 1, p. 259-263. 
29 

Quellen, v. 3, part 1, p. 253; Studien, v. 1, 
1929, p. 75-78; Vorlesungen, p. 180-181. 

30 
Studien, v. 1, 1930, p. 124-126; Quellen, 

v. 3, part 1, p. 246-248. 
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If we set = X? it may be readily shown 
that we are led to the equation 

2da A-d2 
X2 X = 0 

a a ,2+?2 

whence 

1 
X=?-{da + \/d2ct2+ (a2+?2) (A 

- 
d2)} 

a2+?2" 
v x /x 

Now every step of the solution of this 

problem is equivalent to substitution in 

this formula. 
There are scores of problems which 

prove this amazing fact, that the Baby 
lonians of 2000 B. C. were familiar with 
our formula for the solution of a quadratic 
equation. Until 1929 no one suspected 
that such a result was known before the 
time of Heron of Alexandria, two thou 
sand years later. 

In general only the positive sign before 
the radical in the solution of a quadratic 
equation is to be considered; but in the 

following problem31 (because of its nature) 
both roots are called for. The problem on 
a Berlin tablet deals with the dimensions 
of a brick structure of given height h, of 

length I of width w, and of given volume v. 

The exact nature of the structure is not 
clear but it is given that v/a 

= 
hlm, where 

1/a is a given numerical factor. ?+m is 

also a given quantity S; it is required to 
find I and ra. They are evidently roots of 
the quadratic equation 

The upper sign gives the required value 

for I and the lower for ra. Of course both 

roots are positive. 
On another Berlin tablet32 is a problem 

divorced from geometrical connections but 

X2-SX+? = 
0; 

ah 

when I and ra are given by 

which may possibly illustrate another 

point of interest. Two unknowns y?y y2 are 
connected by relations 

(2) 

(1) 

where a, ?, D are given, ?>a. New vari 
ables are then introduced, 

whence Xi ? X2 = ?D, 2 = a(? 
? 

a). From 
the resulting quadratic equation 

X*-?DX-a(?-a)=0 

and ?x2 are found to be, 

y and y 2 are then found from (3). Neuge 
bauer emphasizes that here, and in other 
texts we have a transformation of a quad 
ratic equation to a normal form with unity 
as coefficient of the squared term. And also 
we have another example of an equation 
in which both roots are positive and the 
double sign before the radical is taken in 

solving the question. 
We have now considered Babylonian 

solutions of simultaneous equations, ex 

ponential equations, quadratic equations, 
and cubic equations. Before giving exam 

ples leading to equations of higher degree 
some general remarks may be made about 
17 of the 35 mathematical tablets at 

Yale.33 In size they are from 9.5X6.5 cm. 

to 11.5X8.5 cm. They belong to series and 
contain the enunciation of problems sys 

tematically arranged. No solutions are 

given. On one tablet there are 200 prob 
lems and on the seventeen over 900. Since 

only a few tablets have been preserved 
there must have been thousands of prob 
lems in the original series. 

To give an idea of what is meant by 

problems being arranged in a series it may 

(3) x1=(?-a)yh x2 = ay? 

??+vT(f),+"<'-->} 

* 
Quellen, v. 3, part 1, p. 280-281, 283-285. 

** 
Quellen, v. 3, part 1, p. 350-351; Vorle 

sungen, p. 186-187. 

M 
Quellen, v. 3, part 1, p. 381-516, and part 

2, plates 36, 37, 57-59, p. 60-64; Studien, v. 3, 

1934, p. 1-10. 
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be noted that on one tablet are 55 prob 
lems of the type to find and y, given34 

( x!/ = 600 

I (ax+by)2+cx2+dy2 = B 

where some coefficients can be zero. The 
first equation is the same for all of these 

problems. The second equations for the 
first seven problems are as follows: 

1. (3x)2+ y2= 8500 

2. +2y2= 8900 

3. - 
y2= 7700 

4. (3x+2y)2+ x2 = 17800 

5. +2x2 = 18700 

6. - x2 = 16000 

7. -2x2 = 15100 

Problems 48 and 49 are 

[3x+by 
- 

2(x 
- 

y) ]2 
- 

2y2 
= 28100 

+o;2+2/2 
= 30200. 

The solution of all the equations leads at 
once to a biquadratic equation which is a 

quadratic equation in x2. 
On another tablet, however, are prob 

lems of the type35 

xy = A 

a(x+y)2+b(x-y) + C = 0 

which leads to the most general form of 

biquadratic equation (if d = c+2aA) 

b d bA 
4-\?z3H? 2-x+A2 

= 0. 
a a a 

The second equation of one of the prob 
lems in this group is 

i(x+y)2-60(x-y) 
= 

-100, 

one of the extraordinary examples of a 

negative number in the right hand mem 

ber, to which we have already referred. 
Problems on another tablet36 lead to the 

most general cubic equation. How the 

Babylonians found the solution of such 

equations is unknown. It is true that 
= 

30, ?/ = 20 gives the solution of every 
one of these, and of hundreds of problems 
in other series ; Neugebauer believes, how 

ever, that it is nonsensical to imagine that 
such values were merely to be guessed 
(Quellen, v. 3, part 1, p. 456). 
There are problems about measurement 

of corn and grain, workers digging a canal, 
interest for loan of silver, and more prob 
lems like the Strasbourg texts where alge 
braic questions are derived from considera 
tion of sections of a triangle. Neugebauer 
concludes the second part of his great 
work with an italicized statement to the 
effect that the Strasbourg and Yale texts 

prove that the chief importance of Baby 
lonian mathematics lies in algebraic rela 
tions?not geometric. 

In his work of thirty years37 ago Hil 

precht was guilty of more than one dis 
service to truth. One such was his great 
emphasis on mysticism in Babylonian 
mathematics, its association with what he 
called "Plato's number," 604 = 12,960,000. 
In spite of the protests of contemporary 
scholars such ideas were widely dissemi 
nated. We have noted enough to realize 
that such an idea is purest bunk?rather 

freely to translate Neugebauer's expres 
sion.38 

While it has been possible for me to 
draw your attention to only a few some 
what isolated facts, I trust that you have 
received the impression that in Babylo 
nian algebra of 4000 years ago we have 

something wonderful, real algebra without 

any algebraic notation or any actual set 

ting forth of general theory. And if all 
this was known in 2000 B. C, how far 
back must we go for the beginnings of the 
Sumerian mathematics, simple arithmetic 

operations? Probably back to 3000 B. C. 
at least. 

34 
Quellen, v. 3, part 1, p. 418-420. 

36 
Quellen, v. 3, part 1, p. 455-456. 

38 
Quellen, v. 3, part 1, p. 402a 

37 
Mathematical, Metrological and Chronolog 

ical Tablets, from the Temple of Nippur (Univ. 
Pennsylvania), s.A, Cuneiform Texts, v. 20, 
part 1, Philadelphia, 1906. 

38 K. Danske Videnskabernes Selskab, Ma 

tem.-fysiske Meddelelser, v. 12, no. 13, 1934, p. 
5-6. 
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One thing which is of great interest in 
the study of Egyptian and Babylonian 

mathematics is, that we handle and study 
the actual documents which go back to 
those days, four thousand years ago. 
Contrast with this the way in which we 
learn of Greek mathematics. Even in the 
case of such a widely used work as Eu 
clid's Elements, there is not a single manu 

script which is older than 1200 years after 
Euclid lived, that is about a thousand 

years ago. 

Eight years of work by a young genius 
standing on the shoulders of great pio 
neering scholars, have in extraordinary 
fashion greatly advanced the frontiers of 
our knowledge of Babylonian mathemat 
ics. One can not help feeling that the in 

spiration of such achievement will cause 
more than one man to shout, "Let knowl 

edge grow from more to more," as he too 

joins in the endless torch race to 

"pass on the deathless brand 
From man to man." 
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