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A Remarkable Collection  
of Babylonian 
Mathematical Texts​

Jöran Friberg

A
bout 120 new Mesopotamian math-
ematical cuneiform texts, all from 
the Norwegian Schøyen Collection, 
are published in the author’s book A 
Remarkable Collection of Babylonian 

Mathematical Texts, Springer (2007). Most of the 
texts are Old Babylonian (1900–1600 BC), but 
some are older (Sumerian), or younger (Kassite). 
In addition to the presentation and discussion of 
these new texts, the book contains a broad and 
fairly thorough account of important aspects of 
Mesopotamian mathematics in general, from its 
beginnings in the late 4th millennium BC till its last 
manifestations in the late 1st millennium BC.1

The present paper contains brief presenta-
tions of a selection of interesting mathematical 
cuneiform texts in the Schøyen Collection (tablet 
numbers beginning with MS). Actually, the sub-
collection of mathematical cuneiform texts in the 
Schøyen Collection is so extensive that it is pos-
sible to use examples from it to follow in detail the 
progress of Old Babylonian scribe school students 
in handwriting and computational ability from 
the first year student’s elementary multiplication 
exercises written with large and clumsy number 
signs to the accomplished model student’s ad-
vanced mathematical problem texts written in a 
sure hand and with almost microscopically small 
cuneiform signs.

A beginner’s multiplication exercises with 
large number signs. Figure 1 shows an example 

of a young student’s multiplication exercises, 
beginning with the computation, in terms of 
sexagesimal numbers in floating place value nota-
tion, of the product 50​×​45 ​= ​37 30. (The corre-
sponding result in decimal numbers is, of course, 
50​×​45 ​= ​2,​250 ​= ​37​×​60​+​30.) Note that there 
was no cuneiform number sign for zero, but in-
stead there were separate number signs for the 
ones, from 1 to 9 (upright wedges), and for the 
tens, from 10 to 50 (oblique wedges). In the trans-
literation to modern number signs (to the left in 
Figure 1) the tens are written with a little circle in 
the upper right corner.

Arithmetical table texts with sexagesimal 
numbers. For computations of this kind, Baby-
lonian scribe school students could make use of 
sexagesimal multiplication tables, which they first 
copied from the teacher’s master copy and then, 
at best, learned by heart. Figure 2 shows what such 
sexagesimal multiplication tables could look like.

This is a multiplication table listing multiples 
of the head number 12 (here in transliteration to 
modern number signs and letters). The repeatedly 
occurring word a.rá is a Sumerian loan word in the 
Babylonian text, meaning “times”.

In the table are listed the products of 12 and all 
integers from 1 to 19, as well as all the tens from 
20 to 50. The last two lines of the table assert that 
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Figure 1. MS 2728. An Old Babylonian clay 
tablet with three multiplication exercises.

conform transliteration hand copy



October 2008	  Notices of the AMS	   1077

12​×​40 ​= ​8 and 12​×​50 ​= ​10, which has to be un-
derstood as meaning that 12​×​40 ​=​8​×​60 (=​480) 
and 12​×​50 ​= ​10​×​60 (= ​600). The reason why 
the Babylonians operated in this way with float-
ing values for their sexagesimal numbers was, of 
course, that they had no zeros (neither final nor 
initial) to indicate multiplication with positive or 
negative powers of the base 60.

Curiously, each student seems to have used a 
squiggle of his own design to write the number 19 
in his multiplication tables!

In addition to multiplication tables, Babylonian 
scribe school students had to learn to work also 
with several other kinds of arithmetical tables, 
among them tables of squares, which went from 
“1​×​1 ​= ​1” to “19​×​19 ​= ​6 01” (361), continuing 
with “20​× ​20 ​= ​6 40”,​“30​× ​30 ​=15” (meaning 
15 00),​“40​×​40 ​= ​26 40”,​“50​×​50 ​= ​41 40”, and 
“1​×​1 ​= ​1” (meaning 1 00​×​1 00 ​= ​1 00 00).

Tables of square sides (square roots) went from 
“1 has the side 1” all the way to “58 01 has the side 
59” and “1 has the side 1”.

For some unknown reason there were no tables 
of cubes, but tables of cube sides went from “1 has 
the side 1” all the way to “57 02 59 has the side 
59”, and again “1 has the side 1”. Figure 3 shows a 
quite small clay tablet with a brief excerpt of only 
5 lines from such a table of cube sides. The table 
goes from “36 37 13” to “1 21 53 17”, where 13 
and 17 are the cube sides.

The word íb.si-tam written on the right edge is 
a combination of a Sumerian word íb.si with the 
approximate meaning “equal-sided” (a cube being 
equalsided) and a Babylonian accusative end-
ing -tam. As a matter of fact, the role played by 
Sumerian loan words in Babylonian mathematics 
was just as important as the role played by Greek 
and Latin loan words in modern mathematics.

A characteristic feature of Old Babylonian 
mathematics was the use of tables of reciprocals, 
actually a kind of division tables. The example 
in Figure 4 is a transliteration of such a table of 
reciprocals, apparently with so many errors that 

an irate teacher has crossed over the text on both 
sides of the clay tablet.

An Old Babylonian table of reciprocals always 
begins with two lines saying that “2/3 of 60 is 40” 
and “half (of 60) is 30”. Then it continues with “1/3 
is 20”, “1/4 is 15” and so on, all the way to “1/54 
is 1 06 40” and “1/1 is 1”, “1/1 04 (1/64) is 56 15”, 
and finally “1/1 21 (1/81) is 44 26 40”.

Note that an Old Babylonian table of reciprocals 
lists only reciprocals of “regular” sexagesimal 
integers between 2 and 1 21. An integer is called 
(sexagesimally) regular if it is a divisor of “1”, 
where “1” can mean any power of 60.

There are, for instance, no regular integers be-
tween 54 and 60, and 7 is, of course, not a regular 
integer. The reason why the Old Babylonian table 
of reciprocals ends with the reciprocals of 1 04 
and 1 21 is, probably, that 104 ​= ​64 ​= ​26​ and 
1 21 ​= ​81 ​= ​34​. (Indeed, one recently published 
atypical Old Babylonian (or Sumerian?) table of 
reciprocals ends with the reciprocal of 2 05, where 
2 05 ​= ​125 ​= ​53.)

Arithmetical exercises. Counting with long 
“many-place regular sexagesimal numbers” played 
an important role in Babylonian mathematics. A 
beautiful example is the “descending table of pow-
ers” in Figure 5, which begins with

46 20 54 51 30 14 03 45 ​= ​(3 45)6 ​= ​1512​.

1˚2 a.rá      1   1˚2

1˚2 a.rá1˚5        3

1˚2  a.rá  4˚       8
1˚2  a.rá  5˚    1˚

1˚2 a.rá1˚6  3   1˚2

1˚2 a.rá1˚7  3   2˚4

1˚2 a.rá1˚8  3 3˚ 6

1˚2 a.rá     3   3˚6
1˚2 a.rá     2   2˚4

1˚2 a.rá    4   4˚ 8

1˚2 a.rá    5        1

1˚2 a.rá   6     1 1˚2

1˚2 a.rá   7   1  2˚4

1˚2 a.rá   8  1 3˚ 6

1˚2 a.rá   9  1 4˚ 8

1˚2 a.rá   1˚ 2

1˚2 a.rá 1˚1 2 1˚2
1˚2 a.rá1˚2 2 2˚4

1˚2 a.rá1˚3 2 3˚6

1˚2 a.rá1˚4 2 4˚ 8

1˚2 a.rá 1˚9 3 4˚8
1˚2 a.rá 2˚ 4
1˚2 a.rá 3˚ 6

19 :

Figure 2. MS 2184/3. An Old Babylonian 
sexagesimal multiplication table, head 
number 12.

3˚ 6  3˚ 7   1˚3 íb.si-tam
4˚5   4˚4     1˚4
5˚6   1˚5    1˚5
1   8   1˚6    1˚6
1   2˚1 5˚3   1˚7

Figure 3. MS 3966. A brief excerpt of 5 lines 
from an Old Babylonian table of cube sides.

 igi. 9. gál.    bi      6   4˚

1.  da. àm  4˚.  bi     4˚
$u. ri.  a.  bi            3˚

igi.3. gál.   bi          2˚
igi.4.  gál.   bi         1˚5

igi.5.  gál.    bi        1˚2
igi.6.  gál.    bi        1˚
igi.8.  gál.    bi      7   3˚

 igi. 1˚.gál.    bi      6.   àm
 igi. 1˚2.gál.   bi      5   
 igi. 1˚5.  gál.  bi     4   
 igi.  1˚6. gál.  bi     3  4˚5   
 igi.  1˚8. gál.  bi     3    2˚
 igi.   2˚.   gál.  bi     3 
 igi.   2˚ 4. gál.  bi     2  3˚ 

 igi.   2˚ 5.gál.   bi    2 2˚4

 igi. 4˚5. gál.  bi        1  2˚
 igi. 4˚8. gál.  bi        1  1˚5
 igi. 5˚.   gál.  bi        1  1˚2

 igi. 5˚4.  gál.  bi       1  6 4˚
 1.           gál.   bi        1

 1      4    gál.    bi      5˚6 1˚5

 1   2˚1.   gál.   bi    4˚4 2˚6 4˚

 igi. 4˚.  gál.   bi        1  3˚ igi. 3˚6. gál.  bi        1  4˚
 igi. 3˚2. gál.  bi 1  5˚2 3˚
 igi. 2˚7. gál.  bi  2 1˚3 2˚

Figure 4. MS 3890. A crossed-over Old 
Babylonian table of reciprocals.
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closer look reveals that the 
first number really is 1 01 01 
01. (The zeros, indicating miss-
ing tens, are inserted here for 
clarity.) The small clay tablet 
is probably an assignment, a 
problem that a student was re-
quired to take home with him, 
and to return to the teacher the 
next morning with the correct 
solution. What the student had 
to do in this case was to show 
that 1 01 01 01 divided by 13 
is 4 41 37.

How a division problem of 
this kind could be solved is shown by a similar 
but 500-years-older division exercise in a math-
ematical cuneiform text from the city Ebla. The 
method used in the Ebla text is that a number of 
successively more complicated division problems 
are solved, one after the other, until the desired 
result is reached. Thus, if one wants to divide, for 
instance, 1 01 01 01 by 13, the first step is to divide 
1 00 by 13. The result is that

1 00 ​= ​13​×​4​+​8  
(1 00/13 ​= ​4 with the remainder 8).

(Double zeros, indicating missing sixties, are in-
serted here for clarity.) In the next couple of steps, 
one sees that

1 00 00 ​= ​13​×​4 36​+​12,​and  
1 00 00 00 ​= ​13​× 4 36 55​+​5.

If the results are added together one gets the final 
result that

1 01 01 01 ​= ​1 00 00 00​+​1 00 00​+​1 00​+​1 
​= ​13​×​(4 36 55​+​4 36​+​4)​+​(5​+​12​+​8​+​1) 

​= ​13​×​4 41 35​+​26 ​= ​13​×​4 41 37.

Therefore, the answer to the division problem is 
that 1 01 01 01 divided by 13 is 4 41 37. From a 
modern point of view the method can be explained 
as follows, in terms of infinite sexagesimal fractions 
and common fractions:

1/13 ​= ​;04 36 55 23… 
(= ​4/60​+​36/(60​·​60)​+​·​·​·​),

and

1 01 01 01​×​1/13 ​= ​4 36 55  5/13​+​
4 36  12/13​+​4   8/13​+​1/13 ​=​

4 41 37.

Solutions in table form to combined market 
rate problems. The clay tablet in Figure 8 contains 
two computations, both of the same kind. In the 
first computation, four different commodities 
(wares) have the “market rates” 1, 2, 3, and 4, all 
listed in column 1 of table a. What that means is 
that 1 weight or volume unit of the first commod-
ity, or 2 of the second, or 3 of the third, or 4 of 

Then, one at a time, a factor 3 45 is removed until 
at the end

(3 45)2 ​= ​14 03 45 and (3 45)1 ​= ​3 45.

Note that 3 45 (225) is the square of 15 and the 
reciprocal of 16, the square of 4.

Two different division methods can 
be observed in Babylonian mathemat-
ics. The first method was used when 
a sexagesimal number a​ should be di-
vided by a regular sexagesimal number 
b​. Then the first step was to compute 
the reciprocal of b, called in Sumerian 
igi b​, probably meaning “the opposite 
number to b”, and the second step was 
to compute a​/b​ as a​× igi b​(= ​a​×​1/b​). 
However, if b was a non-regular sexag-
esimal number, another method had 

to be used. One 
case of this 
kind appears in 
the next exam-
ple (Figures 7a 
and 7b). There 
three numbers 
recorded below 
each other at 
first sight look 
like 4, 13, and 
4 41 37.  A 

Figure 7b. MS 2317. A sexagesimal division 
problem with the non-regular divisor 13.

4˚ 6   2˚    5˚  4     5˚ 1   3˚    1˚ 4     3  4˚ 5

1˚ 2    2˚ 1   3˚   4       3˚    7    4˚ 4    3   4˚ 5

3    1˚ 7   4˚    5    1˚ 4      3  4˚   5

5˚     2     4˚  4      3     4˚  5

1˚  4          3     4˚    5

3      4˚   5

Figure 5. MS 2242. A descending table of powers, with powers of the regular 
number 3 45 (= sq. 15).

Figure 6. The sexagesimal number 13 22 50 54 59 09 29 58 26 
43 17 31 51 06 40 = 205. Written in two lines on the obverse of 

the tablet and continued onto the reverse.

Figure 7a. A division 
exercise: 1 01 01 01 

divided by 13 =  
4 41 37.

1 1 1 1
1˚ 3

4   4˚1 3˚ 7
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the fourth, can be bought for 1 shekel of silver (in 
Sumerian 1 gín kù.babbar). Apparently, the ques-
tion is how much a person can buy for 1 shekel 
of silver if equal amounts are bought of all four 
commodities.

The first step of the solution algorithm is the 
computation of the “unit price” for each commod-
ity. It is 1 shekel for 1 unit of the first commodity, 
1/2 (= ;30) shekel for 1 unit of the second commod-
ity, and so on. These values are listed in column 
2 as the numbers

1,​30(= ;30 ​= ​1/2),​20(= ;20 ​= ​1/3),​

a​n​d​

15(= ;15 ​= ​1/4).

Consequently, the “combined unit price” for 1 unit 
of each commodity is

(1 + ;30 + ;20 + ;15) shekels = 2;05 shekels.

Now, the reciprocal of

2;05 = 2   1/12 = 25/12

is

12/25 ​= ​(12/5)/5 ​= ​(2;​24)/5 ​= ;​28 48 
​= ​28/60​+​48/602​.

Therefore, ;28 48 units of each commodity can be 
bought for 1 shekel of silver, as noted in column 
4 of table a. The prices paid for ;28 48 units of 
each kind are listed in column 3. They are ;28 48 
shekel for the first commodity, ;14 24 shekel for 
the second, and so on. It is easy to check that the 
sum of the prices recorded in column 3 is precisely 
1 shekel. Indeed,

(;​28 48+;​14 24+;​09 36+;​07 12) shekels  
= 1 shekel.

Clearly, then, the object of the exercise was to 
compute the “combined market rate” ;28 48.

Geometric exercises. Old Babylonian round 
or square “hand tablets”, hastily inscribed with 
numbers or geometric figures, seem to have been 
a kind of brief notes, written down by scribe 
school students more or less attentively listening 
to a teacher’s explanation of how a mathematical 
problem should be solved. It is likely that, precisely 
as in the case of the small clay tablet in Figure 7a, 
each student was supposed to go home with his 
hand tablet and spend part of the evening writing 
down a detailed version of the solution procedure, 
to be brought back to school the next day.

In Figure 9 is shown an example of such a hand 
tablet, with a diagram showing a parallel trapezoid 
divided in three parts by two transversals parallel 
to the base and the top of the trapezoid. A reason-
able interpretation of this text is that the student 
was expected to find the lengths of the four par-
allel straight lines in the case when it is known 
that the two transversals divide the long side (or, 
rather, the height) of the trapezoid in three parts 
of length 10, 20, and 30 “rods” (1 rod = 6 meters), 
while the whole trapezoid is divided in three parts 
of which the first and the third have the same area, 
1 40 square rods. If the lengths of the four parallel 
straight lines are called p​,​q​,​r​,​s, then a problem of 
this kind can be replaced by four linear equations 
for four unknowns:

(p​+​q​)/2​×​10 ​= ​1 40, 
​(r ​+​s​)/2​×​30 ​= ​1 40, 

​(p−q​)/10 ​= ​(q−​r​)/20 ​= ​(r​−s​)/30

The solution to this system of equations is indi-
cated in the diagram:

p ​= ​10 50,​q ​= ​9 10,​r ​= ​5 50,​s ​= ​50.

The example demonstrates a clear distinction be-
tween Babylonian and Greek mathematics: While 
Greek geometry was abstract and reasoning, Baby-
lonian geometry was concrete and numerical.

This distinction is also demonstrated by the 
next example, an elaborate diagram on another 
hand tablet (Figure 10). Here three parallel trap-
ezoids of the same form and size are joined to 

1 gín kù.babbar

a

b

1 1 2˚ 8   4˚ 8 2˚ 8   4˚ 8
2˚  8   4˚ 8

2˚  8    4˚ 8

2˚  8   4˚ 8

3˚

3˚

 2˚

2˚ 8     7   3˚ 5˚    6 1˚5

5˚    6 1˚5

5˚    6  1˚5

5˚   6 1˚5
3    4˚    5

9    2˚   2    3˚

1˚ 8   4˚  5
2˚

1˚ 5

1˚

1˚ 5

2

2

3

3

6

4

4

1 gín kù.b.

1˚4   2˚ 4

9     3˚ 6

7   1˚ 2

Figure 8. MS 2830. Two computations of 
combined market rates.

1˚ 2˚

2  3˚ 1 4˚ 5˚

9   1˚

5 5˚

1˚    5˚ 1 4˚

3˚

Figure 9. MS 3908. A parallel trapezoid divided by two 
parallel transversals.
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two parallel sides in the trapezoid are 10​+​a​ and 
10​+​2a​. At the same time, the length of the side 
of the outer equilateral triangle is 10​+​3 a ​= ​1 00. 
Therefore,

a ​= ​50/3 ​= ​16;​40,​10​+​a ​= ​26;​40,
​and 

10​+​2a ​= ​43;​20,

as indicated in the diagram.
Knowing this, the area of the triangular band 

can be computed in two ways. One way is to 
compute the combined area of the three equal 
trapezoids. It is

3​×​(43;​20​+​26;​40)/2​×​h ​= ​3​×​35​×​h, 

where h is the height of the trapezoid.
Another way is to observe that since the side of 

the outer equilateral triangle is 6 times as long as 
the side of the inner equilateral triangle, its area 
is 36 times as large. Consequently,

the area of the triangular band is 35 
times the area of the inner equilateral 
triangle.

Thus, in both cases, the number 35 recorded near 
the lower edge of the lentil can be explained as a 
number closely associated with the computation 
of the area of the triangular band!

Another, considerably less elegant, example of a 
schoolboy’s brief note of a geometric problem, this 
time on a small square clay tablet with rounded 
corners, is shown in Figure 11. The diagram on the 
clay tablet shows a circle inscribed in the middle of 
a square. The meaning of the numbers surrounding 
various parts of the diagram is far from obvious. 
Fortunately, however, there is another text that 
may explain what is going on here, namely an Old 
Babylonian mathematical problem text from the 
city Susa in Western Iran, east of Mesopotamia 
itself. In that text, a so-called “concave square” is 
inscribed symmetrically around the middle of a 
square, and the explicitly stated problem is to find 
the side of the square when both the area of the 
region between the square and the concave square 
and the shortest distance from the concentric 
square to the sides of the square are known. This 
problem is reduced to a quadratic equation. And 
so on. (The correct interpretation of the problem 
was found by Kazuo Muroi.)

If the problem associated with the diagram in 
Figure 11 was of the same kind as the mentioned 
problem in the text from Susa, it can be explained 
as follows: Given are the distance b​ from the circle 
to the sides of the square and the area B​ of the 
region between the circle and the square. What are 
then the circumference a​ of the circle and the side 
s of the square?

The side of the square is ;​20a​+​2b​, and the 
area of the circle is ;​05​×​sq. a​. (Here sq. a means 
the square on a, while ;​20 ​= ​1/3 and ;​05 ​= ​1/12 

form a “triangular band” bounded on the inside 
and the outside by parallel and concentric equilat-
eral triangles. A reasonable interpretation is that 
the diagram illustrates the problem to find the area 
of the triangular band when it is known only that 
the two equilateral triangles have the sides 10 and  
1 00, respectively.

This problem can be solved in the following 
way: Let a​ be the length of one of the oblique sides 
in one of the trapezoids. Then the lengths of the 

2  1˚6   4˚5
2  1˚3   4˚5
4˚5 5˚6 1˚53˚

3 2˚

5˚2 3˚2   5 

3˚1˚5 1˚5 1˚5

Figure 11. MS 2985. A circle in the middle of a square.

1˚ 6 4˚

3˚   5

4˚ 3    2
˚

1˚

1˚

1˚

4˚  3      2˚

4˚  3   2˚

1˚ 6 4˚

1 6 4˚1˚ 6 4˚

1˚ 6
  4

˚

1˚6 4˚

Figure 10. MS 2192. A triangular band divided into a ring of 
three trapezoids.



October 2008	  Notices of the AMS	   1081

are the Babylonian approximations to 
what we call 1/π​ and 1/(4π​).) There-
fore the circumference a of the circle 
can be computed as the solution to the 
quadratic equation

sq. (;​20a​+​2b​)​− ;​05​×​sq. a ​= ​B​,

or,  since  sq. ;​20 − ;​05 ​=;​06 40 − ;​05 ​=;​01 40 
= ​sq.;​10, and ​4 × ;​20 ​= ​1;​20,

sq. (;​10a​)​+​1;​20 b​×​a​+​sq. (2 b​) ​= ​B​

Apparently, as indicated in two places 
in the diagram, b ​= ​15, and, as indicated 
by the notations near the left edge of the 
clay tablet, sq. (2b​) ​= ​sq. 30 ​= ​15 00. 
Therefore, the equation above for a can 
be reduced to

sq. (;​10a​)​+​20 × a​+​15 00 ​= ​B​, or 
sq. (;​10a​+​1 00) ​= ​B ​+​45 00.

Counting backwards from the most likely solution, 
one finds that the given value for B probably was 
39 36;33 45. With this value for B, the equation 
for a becomes

sq. (;​10a​+​1 00) ​= ​39 36;​33 45​+​45 00 ​​
= ​1 24 36;​33 45 ​= ​sq. 1 11;​15.

Consequently,

;​10a​+​1 00 ​= ​1 11;​15, so that 
a ​= ​1 07;​30,​ ;​20a ​= ​22;​30, and s ​= ​52;​30.

Note that the value s ​= ​52;​30 is recorded along 
the side of the square, and that the corresponding 
value sq. s ​= ​45 56;​15 is recorded near the middle 
of the square.

An Old Sumerian metric table of rectangles. 
The oldest mathematical text in the Schøyen 
Collection (Figure 12) is an Old Sumerian table 
text from ED III (the Early Dynastic III period, 
c. 2600–2350 BC). It is so old that the sexagesimal 
numbers appearing in it are written without the 
use of place value notation, with special number 
signs not only for 1 and 10 but also for 60 and  
10 · 60. The sign for 60 is a larger variant of the 
sign for 1, and the sign for 10 · 60 is the sign for 
60 with the sign for 10 inside. In addition, the text 
is so old that numbers are not written with cunei-
form (wedge-like) number signs but with rounded 
signs, punched into the clay of the tablet with a 
round stylus used only for numbers.

The first six lines of this text can be interpreted 
as a “metric table of rectangle sides and areas”. In 
each line are recorded first the length of the short 
side of a rectangle (Sum.: sag), then the length of 
the long side, and finally the area of the rectangle 
(Sum.: aša5​). In all the six lines, the long side is 60 
times as long as the short side. This artificially im-
posed condition is enough to show that the text is 
mathematical rather than “practical” (a surveyor’s 
work notes). In the transliteration below of the six 

lines of the metric table of rectangles, the following 
Sumerian terms are used:

1 geš = sixty, 1 iku = sq. (10 rods),  
1 èše = 6 iku, 1 bùr = 3 èše, 1 šár = 
sixty bùr.

The seventh line gives the sum (Sumerian:  
an.šè.gú) of the six computed areas. This line may 
have been added to the six lines of the metric 
multiplication table in order to artificially give the 
exercise the appearance of a practical text!

The sum can be computed as follows:

5 rods×5 geš (rods)=2 èše 3 iku (2 1/2 èše)
10×10 geš= 3 bùr 1 èše (10 èše)
20×20 geš= 13 bùr 1 èše (40 èše)
30×30 geš= 30 bùr (90 èše)
40×40 geš= 53 bùr 1 èše (160 èše)
50×50 geš=1 šár 23 bùr 1èše (250 èše)
sum 3 šár 4 bùr 3 iku (552 1/2 èše)

Babylonian labyrinths of a previously un-
known type. Two clay tablets in the Schøyen 
Collection are inscribed with labyrinths. Both laby-
rinths are of completely new types, which is greatly 
surprising, since up till now all known ancient 
drawings or depictions of labyrinths have been 
either simple and uninteresting or diverse variants 
of the classical “Greek” or “Mycenaean” labyrinth. 
One of the new Babylonian labyrinths is the one in 
Figures 13 and 13a. Unlike the classical labyrinth 
it is (fairly) symmetrical, and there are two open-
ings into the labyrinth. If you enter through one of 
the openings, you will ultimately exit through the 
other one. (Due to a misinterpretation of an unclear 
photo, an unsymmetrical version of the labyrinth 
with two dead ends at the center was proposed in 
section 8.3a of my book A Remarkable Collection. 
I am very grateful to Tony Phillips for pointing out 
the mistake. The same easily corrected mistake 
was made in section 8.3c of the book in the case 
of a more complicated Babylonian rectangular 
labyrinth with two open and eight closed gates.)  
The labyrinth is skillfully and exactly drawn, which 
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Figure 12. MS 3047. An Old Sumerian metric table of rectangle sides and 
areas.
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a pair of reciprocal sexagesimal numbers is given, 
called igi and igi.bi. In § 3 e, for instance,

igi = 1 12 and igi.bi = 50 (floating values).

It is easy to check that (with appropriately chosen 
absolute values) igi × igi.bi = 1;12 × ;50 = 1. With 
these given values, the first step of the procedure 
is the computation of the half-sum

(igi + igi.bi)/2 = (1;12 + ;50)/2 = 1;01.

Then are computed, in succession,

sq. 1;01 = 1;02 01, sq. 1;01 – 1 = ;02 01, and the 
square side sqs. ;02 01 = ;11.

In the last line of the exercise, ;11 is called “the 5th 
short side” (Sum.: sag ki.5).

Similarly in § 3 d, where igi = 1;20, igi.bi = ;45, 
so that (igi + igi.bi)/2 =1;02 30, sq. 1:02 30 = 1;05 
06 15, sq. 1;02 30 – 1 = ;05 06 15, and the “4th 
short side” = sqs. ;05 06 15 = ;17 30. It is clear 
that the purpose of each one of the five exercises 
is to construct a rectangle with rational sides 
and rational diagonal, “normalized” in the sense 
that the long side = 1. The basic idea is to let the  
rational diameter be a half-sum of the form (igi + 
igi.bi)/2, with igi × igi.bi = 1, at the same time as 
the long side is required to be 1. Then the short 
side will automatically be a half-difference of the 
form (igi – igi.bi)/2, and therefore rational. It is easy 
to check that in § 3 e, for instance, (1;12 – ;50)/2 
= ;11 = the 5th short side.

It is explicitly shown by these five exercises that 
Old Babylonian mathematicians were aware of the 
fact that arbitrarily many rectangles with rational 
sides u, s, and diagonal d can be constructed by 
use of the “generating rule”

d, u, s = (igi + igi.bi)/2, 1, (igi – igi.bi)/2,

where igi, igi.bi are arbitrarily chosen regular sexa-
gesimal numbers with igi × igi.bi = 1. Now, there 
are always integers p and q such that

would hardly have been possible if the one who 
drew it had not used a cleverly devised algorithm 
for the drawing of the labyrinth. Moreover, that 
algorithm must have been totally different from 
the well known algorithm for the construction of 
a classical Greek labyrinth.

Generating rules for rational solutions to the 
“Pythagorean equation”. There are six larger 
“problem texts” in the Schøyen Collection, with 
more or less explicit questions, solution proce-
dures, and answers. In Figure 14 is exhibited an 
example of an Old Babylonian problem text. One 
of the surprises in this new text is the set of five 
exercises in § 3. In each one of the five exercises, 

Figure 13. MS 4515. The step-wise algorithm for the construction of the Babylonian square 
labyrinth. In steps 1 and 2a, the outer walls are constructed, with two open and two closed gates. 

After step 2a, alternatingly red follows black, at a constant distance, or black follows red, at the 
same constant distance.

steps 1, 2 and 3 steps 7 and 8; change of direction                       steps 10, 11 and 12

1

3

7

2b

2a

8

Figure 13a. A Babylonian square labyrinth.
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igi = p/q and igi.bi = q/p, so that 
(igi + igi.bi)/2, 1, (igi – igi.bi)/2  

= {(sq. p + sq. q), 2 p × q, (sq. p – sq. q)}/(2 p × q).

This Old Babylonian generating rule for the 
rational sides and diagonal of a rectangle is es-
sentially identical to the modern generating rule, 
of Greek origin, for the rational sides of a right-
angled triangle. (Note, however, that according to 
Old Babylonian conventions, p/q must be a regular 
sexagesimal number and (igi – igi.bi)/2 < 1, in other 
words sq. p – sq. q < 2 p × q.)

It is interesting that the examples in § 3 of the 
new text in Figure 14 strongly support the inter-
pretation of the famous table text Plimpton 322 
suggested by the present author already in a paper 
in Historia Mathematica in 1981!

The Babylonian diagonal rule in 3 dimensions. 
In Figure 15 is shown the reverse of a small frag-
ment in the Schøyen Collection of a large math-
ematical text with mixed problems. The text is 
possibly Kassite (post-Old Babylonian). By luck, the 
fragment contains a perfectly preserved summary 
of the various kinds of problems appearing in the 
text. No other known large Babylonian problem 

text, except a second text in the Schøyen Collection 
(see Figure 17), contains a similar summary.

According to the summary, the whole text origi-
nally contained 16 exercises, or, more precisely, 6 
problems for “circles” (Sum.: gúr.meš ), 5 problems 
for “squares” (Sum.: nígin), 1 problem for a “trian-
gle” (Sum.: sag.kak), 3 problems for “brick molds” 
(trapezoids?) (Bab.: na-al-ba-tum), and 1 problem 
for an “inner diagonal of a gate” (Sum.: šà.bar ká). 
The problem for an inner diagonal (perfectly pre-
served on the reverse of the fragment) is a totally 
unexpected surprise in a Babylonian mathematical 
text (see Figure 16).

The object of the exercise is a gate in a city wall. 
The height h of the gate is “5 cubits and 10 fingers” 
= 5 1/3 cubits = ;26 40 (rods), the width w is ;08 
53 20, and the thickness t of the city wall is ;06 
40. The “inner diagonal” d of the gate is computed 
as follows, by use of a three-dimensional version 
of the Old Babylonian “diagonal rule” (incorrectly 
known as the “Pythagorean equation”):

sq. d = sq. h + sq. w + sq. t = ;11 51 06 40 + 
;01 19 00 44 26 40 + ;00 44 26 40 = ;13 54 34 14 

26 40,d = sqs. ;13 54 34 14 26 40 = ;28 53 20.

 

  

 

                            
                   

 
                              

       
 

   

  
 

        
    

            

 
  

 

 

Figure 15. MS 3049, reverse. A problem for 
an “inner diagonal”, and a summary.

 

               

  
 

  

 

   

  

 
    

 
     

     
     

  

  
  

        

 

    

 

    

     
 

         

 

  

Figure 14. MS 3971. Transliteration of an Old Babylonian 
mathematical problem text.



1084   	 Notices of the AMS	 Volume 55, Number 9

An explanation for the complicated form of the 
data is easy to find, since

h = ;26 40 = 12/27, w = ;08 53 20 = 4/27, t = ;06 
40 = 3/27, and d = ;28 53 20 = 13/27.

Therefore, the given values of the parameters for 
the gate can be understood as

d, h, w, t = 1/27 · (13, 12, 4, 3).

The “diagonal quartet” (13, 12, 4, 3) is a solution 
in integers to the equation

sq. d = sq. h + sq. w + sq. t.

It is obvious that it was constructed through a 
combination of the two “diagonal triples” (13, 12, 
5) and (5, 4, 3). The idea must have been that if 
d1 is the diagonal of the bottom rectangle of the 
gate, then

sq. d = sq. h + sq. d1 with sq. d1 = sq. w + sq. t.

Therefore, d, h, d1 = 1/27 · (13, 12, 5) and d1, w, t 
= 1/27 · (5, 4, 3).

Complicated stereometric problems disguised 
as problems for clay walls. The clay tablet shown 
in outline in Figure 17 is a problem text in the 
Schøyen Collection with a well preserved obverse 
but a much less well preserved reverse. Just like 
the text in Figure 15, this text ends with a summary 
of the four themes appearing in it.

According to the summary, § 2 is a problem for 
a “diagonal”. It is, actually, an igi-igi.bi problem of 
the same kind as the exercises in § 3 of MS 3971 
(Figure 14). The theme of § 3 is an “excavated 
room”, and the theme of § 4 a “square”. The theme 
of § 1, which contains 5 exercises, is a “clay wall”. 
The 5 associated diagrams, looking like depictions 
of trapezoids and triangles, are actually depictions 
of the cross sections of 5 clay walls. Some of the 
problems in this paragraph are quite complicated 
and lead to equations that are solved by use of re-
ally surprising solution procedures. No Babylonian 
mathematical texts with similar problems or solu-
tion procedures have been published earlier.

The problem in § 1 a is about a clay wall with 
a trapezoidal cross section. The trapezoid has a 
given height, 6 cubits, a given base, 3 cubits, and 
a given top, 1/3 cubit. The length of the clay wall 
is given, too, 3 00 rods. Now the clay wall has to be 
extended by 20 rods. The material for the exten-
sion is obtained through tearing down the upper 
part of the original clay wall. The question is how 
much lower the new wall will become. The answer 
is 1 1/2 cubit lower.

The clay wall in § 1 b has again a trapezoidal 
cross section. The length, height, and volume of 
the clay wall are given. At a certain height over the 
ground a hole drilled through the clay wall has a 
given length. The question is how wide the clay 
wall is at the base and at the top.

In § 1 c, which is similar to § 1 b, the clay wall 
has a triangular cross section, and the problem in 

extension

drilled hole

torn down upper part

Figure 18. MS 3052 § 1 d. A clay wall with an extension 
and a hole.

§ 1 a
clay wall

§ 1 e
clay wall 

§ 2 
diagonal

§ 4
square

summary

§ 3
excavated room

§ 1 b
clay wall 

§ 1 c
clay wall

§ 1 d
clay wall

3 cm

Figure 17. MS 3052. A mathematical problem 
text with 4 themes and a summary.

Figure 16. The construction of the data in the problem for an 
“inner diagonal of a gate”.
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§ 1 d (Figure 18) is a combination of the problems 
in §§ 1 a and 1 c. It is likely that the problem in the 
damaged § 1 e was a combination of the problems 
in §§ 1 a and 1 b.

Apparently, § 1 of the text in Figure 17 is an 
excerpt from some large and systematically orga-
nized Old Babylonian “theme text” with elegantly 
devised problems.

The weight of a colossal icosahedron made of 
20 finger-thick copper plates. Perhaps the most 
interesting mathematical cuneiform text in the 
Schøyen Collection is the one shown in Figure 19. 
It is a small clay tablet with a minute script and an 
unusual terminology. It is probably Kassite, that is 
from the time after the Old Babylonian period in 
Mesopotamia (the second half of the second mil-
lennium BC). Only one mathematical problem text 
from the Kassite period was published earlier.

The text begins with a curious computation of 
the number of certain “gaming-piece fields”. If this 
translation of the corresponding Sumerian term 
in the text is correct, then “gaming-piece fields” 
must be geometric figures looking, in some way, 
like gaming-pieces. The number N of such figures 
is computed in the following way:

Given is a “constant” 6.

This constant is diminished by 1, and 
the remainder is multiplied by 4.

The result is that N = (6 – 1) · 4 = 20.

The next step of the procedure is the computation, 
in the following way, of the area A of a “gaming-
piece field” with the side 3 cubits:

3 cubits = ;15 rods, 1/2 · 3 cubits = 
;07 30 rods,

1/2 · 3 cubits × 3 cubits = ;01 52 30 
sq. rods,

1/8 · ;01 52 30 sq. rods = ;00 14 03 45 
sq. rods,

A = (;01 52 30 – ;00 14 03 45) sq. rods 
= ;01 38 26 15 sq. rods.

The computation shows that “gaming-piece 
field” is a term with the meaning “equilateral 
triangle”. Indeed, if s is the side of an equilateral 
triangle, then the area of the triangle is

A ​= ​1/2​·​sq. s ​·​
√

3/2.

The same equation for the area of an equilateral 
triangle is used in the text in Figure 19, but with √

3/2 replaced by the approximation 1 – 1/8 = 7/8. 
This means that the approximation used for 

√
3 

was 7/4, which is a good approximation, since sq. 
7/4 = 49/16 = 3 1/16 (= 3;03 45).

In the last part of the text is computed the 
weight of a “horn figure” composed of (6 – 1) · 4 
= 20 gaming-piece figures (equilateral triangles) 
made of 1 finger thick copper plates. The first 
step of this part of the procedure is the computa-
tion of the combined area of the 20 gaming-piece 
figures:

20 A = 20 · ;01 38 26 15 sq. rods  
= ;32 48 45 sq. rods.

Next is computed the combined volume V of 
the 20 triangular copper plates, all 1 finger thick. 
To understand the computation, one must know 
that 1 finger = 1/30 cubit = ;02 cubit, and that the 
Babylonian basic volume unit was 1 sq. rod × 1 
cubit. Therefore,

V = ;32 48 45 sq. rods × ;02 cubit  
= ;01 05 37 30 sq. rods × 1 cubit.

The last step in the procedure is a multiplication by 
the number 1 12, called “the constant for copper”. 
What this means can be explained as follows:

According to a Babylonian conventional com-
putation rule,

1 talent is the weight of a square copper 
plate with the side 1 cubit and 1 finger 
thick, where 1 talent = 1 00 minas = 1 00 
00 shekels (approximately 30 kg).

Figure 19. MS 3876. A computation of the weight of a colossal 
icosahedron.
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Alternatively, since 1 rod = 12 cubits and 1 cubit 
= 30 fingers,

1 12 00 talents is the weight of 1 volume 
unit (1 sq. rod × 1 cubit) of copper.

Consequently, the weight of the “horn figure” is

W = ;01 05 37 30 sq. rods  
× 1 cubit · 1 12 00 talents/1 sq.rod  

× 1 cubit = 1 18;45 talents (c. 2360 kg).

After this explanation of all the computations in 
the Kassite text in Figure 19, it remains only to ex-
plain the meaning of the term “horn figure”: Which 
figure can be constructed by use of 20 equilateral 
triangles, where 20 is computed as (6 – 1) · 4?

The only possible answer seems to be that “horn 
figure” was the name for a regular polyhedron with 
20 faces, more precisely what we call an icosahe-
dron, a term of Greek origin. The explanation for 
the curious computation of the number 20 can 
then be that an icosahedron can be constructed 
by folding together in an appropriate way a plane 
figure composed of (6 – 1) · 4 equilateral triangles 
joined together in the way shown in Figure 20, left. 
The first step in the construction of that plane 
figure is to remove an equilateral triangle from a 
regular hexagon, leaving 6 – 1 equilateral triangles. 
The next step is to form 6 – 1 chains of four equi-
lateral triangles, in Figure 20, left called 1a – 1d, 
2a - 2d, etc. The result of the folding together of 
the figure composed of 6 – 1 chains is shown in 
Figure 20, right.

Many surprises in Babylonian mathematics. 
The six Babylonian problem texts in the Schøyen 
Collection amply confirm the empirical rule that 
all new Babylonian problem texts tend to contain 
surprises. What this means is that still very little is 
known about the true extent of Babylonian math-
ematics. Why that is so is probably because very 
few of the known Babylonian cuneiform texts are 
well organized original theme texts produced by 
some of the extraordinarily talented but anonymous 

mathematicians who laid the foundation for 
Babylonian mathematics. What is known, so 
far, is mainly a large number of excerpts from 
table texts, and various simple exercises, writ-
ten by scribe school students at a relatively 
elementary level, often full of errors. A much 
smaller number of known advanced exercises 
were probably copied by older students from 
the teachers’ treasured original theme texts. 
There are also several known mathematical 
“recombination texts”, large clay tablets ap-
parently produced by enterprising teachers 
who more or less systematically collected and 
wrote down together such copies of parts of 
the original theme texts. For all these reasons, 
the picture we presently have of Babylonian 
mathematics at the most advanced level is 
probably far from complete.

Other examples of color photographs like 
the ones in this article can be found at http://
cdli.ucla.edu by searching for author Friberg. 
More information can be found at the author’s 
homepage http://www.geocities.com/ 
jranfrib.
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Figure 20. How an icosahedron can be formed by folding a 
plane figure.
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