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ST É PHAN IE J ENOUVR IER * † § ¶ , MAR IKA HOLLAND ‡ , J UL I ENNE STROEVE § ,
CHR I S TOPHE BARBRAUD † , HENR I WE IMERSK IRCH † , MARK SERREZE § ¶
and HAL CASWELL*k
*Biology Department, MS-34, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, †Centre d’Etudes
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Abstract

Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a pop-

ulation projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models

(stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of

IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice

concentration anomalies (SICa) affect adult survival and breeding success. Demographic models show that both

deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa, because

neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for

the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the

variance in SICa. We identify an ensemble of five general circulation climate models whose output closely matches

the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic

forecasts of SICa, which in turn drive the population model. Uncertainty is included by incorporating multiple

climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model

selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor pen-

guin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncer-

tainty in population projections reflects large differences among climate models in their forecasts of future sea ice

conditions. One such model predicts population increases over much of the century, but overall, the ensemble of

models predicts that population declines are far more likely than population increases. We conclude that climate

change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are

linked to IPCC climate models, is powerful and generally applicable to other species and systems.
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Introduction

Given the observed and predicted changes in climate

(Solomon et al., 2007) conservation biologists face a

major challenge because climate affects all aspects of

the life cycle of a species (life history traits, phenology,

movement). This results in changes in populations,

species distributions, and ecosystems (see reviews by

Hughes 2000; McCarty 2001; Parmesan 2006; Parmesan

& Yohe 2003; Vitousek 1994; Walther et al. 2002). The

emperor penguin (Aptenodytes forsteri) is a species that

is known to be extremely sensitive to climate change,

especially to changes in the sea ice environment

(Barbraud & Weimerskirch, 2001; Croxall et al., 2002;

Jenouvrier et al., 2005a, 2009b; Forcada & Trathan, 2009;

Fretwell & Trathan, 2009; Ainley et al., 2010; Trathan

et al., 2011). In this article, we analyze the population

responses of the emperor penguin to sea ice conditions

and project its fate over the rest of the 21st century

using a novel and more comprehensive analysis than

previous studies.

Climate may affect vital rates (a general term for rates

of survival, fertility, development, etc.) in many ways
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(Stenseth et al., 2002; Ballerini et al., 2009) and possibly

in opposite directions (Barbraud & Weimerskirch,

2001). For example, mean winter temperature has a

positive effect on adult survival but a negative effect on

fecundity of the Eurasian Oystercatcher (Haematopus

ostralegus) (van de Pol et al., 2010). Therefore, to fully

understand the population effects of climate change,

climate effects on the vital rates should ideally be incor-

porated into models including the full life cycle (Adahl

et al., 2006; van de Pol et al., 2010). Although many stud-

ies have related climate to one or a few vital rates (e.g.

Jenouvrier et al., 2003, 2005b), few have integrated these

effects into the entire life cycle (but see e.g. Jenouvrier

et al., 2009b; Wolf et al., 2010; Hunter et al., 2010;

Barbraud et al., 2010).

Seasonality can be particularly important, because

the effects may occur at different times during the

seasonal cycle (Visser et al., 1998). Complex interactions

of climate variables have been shown to occur for sea-

sonally breeding species, which may fail to adjust their

breeding phenology to track the peak of food availabil-

ity for their young (Both et al., 2006; Moller et al., 2008).

The responses of vital rates to climate conditions is

only half of the story; to project the population

response to climate change, it is necessary to link the

demographic models to forecasts of future conditions

(e.g. Jenouvrier et al., 2009b). A primary source for such

forecasts is the set of climate model simulations that

have contributed to the Intergovernmental Panel on

Climate Change (IPCC) assessment reports (Stock et al.,

2011). A growing number of studies have now linked

climate-dependent demographic models to these

climate models (e.g. seabirds Jenouvrier et al., 2009b;

Barbraud et al., 2010; polar bears Hunter et al., 2010).

Our approach is to measure the effect of climate on

the vital rates in a complete life cycle model, to incor-

porate those vital rates into a population model to

compute population growth as a function of climate,

and then to obtain forecasts of climate trajectories from

climate models and use those to drive projections of

population growth. In this article, we extend previous

studies (Barbraud & Weimerskirch, 2001; Jenouvrier

et al., 2005b, 2009b, 2010), especially that of Jenouvrier

et al. (2009b), in several ways. (1) We obtain rigorous

statistical estimates of how sea ice, at different seasons

of the year, affects penguin vital rates. (2) We distin-

guish males and females, recognizing that the sexes

differ in their sensitivity to sea ice variations (Jenouvri-

er et al., 2005b) and that breeding is absolutely depen-

dent on participation by both males and females

(Prevost, 1961). (3) We introduce a new method of

selecting climate models based on the agreement of

their output with both the mean and the variance in

observed sea ice. (4) To include stochasticity in the

climate forecasts, only one or a few realizations of

which are available, we developed a new method to

estimate stochasticity from time series of global circu-

lation model (GCM) output.

Projections from models that are estimated from data

are always accompanied by uncertainty. If the results are

to be useful for policy makers, it is essential to quantify

that uncertainty, and to draw conclusions that remain

valid even given the range of uncertainty (Hunter et al.,

2010). We have used the results of statistical estimation

of demographic parameters, and differences among an

ensemble of climate models, to quantify this uncertainty.

The organization of the article is as follows. Firstly,

we use a long-term dataset to estimate the effects of sea

ice on the vital rates. Secondly, we evaluate the effect of

sea ice on deterministic and stochastic population

growth rates for the emperor penguin. Thirdly, we

compute stochastic sea ice forecasts from a selected set

of climate models, and use those forecasts to project

population response to future sea ice change.

Emperor penguin life cycle and sea ice

Various components of the sea ice environment affect different

parts of the emperor penguin life cycle during different sea-

sons (see review by Croxall et al., 2002; Forcada & Trathan

2009; Ainley et al., 2010). In this section we outline the life cycle

of the emperor penguin and define the sea ice variables used

in our analysis. Then, we discuss the mechanisms by which

sea ice affects the vital rates and present the results of estimat-

ing these effects using capture mark recapture (CMR) analysis.

Study population and data

Our analysis is based on a long-term dataset on breeding

emperor penguins at Dumont D’Urville, Terre Adélie, in Ant-

arctica (66°40′S 140°01′E). The colony has been monitored

every year, during the breeding season (March–December),

from 1962 onwards. For details of the history and data, see Pre-

vost (1961) and Jenouvrier et al. (2005a). From 1962 onward,

breeding adults, number of eggs, frozen chicks, and surviving

chicks at the end of the breeding season have been counted,

allowing the estimation of breeding success (Barbraud &

Weimerskirch, 2001). From 1968 to 1988, penguins were indi-

vidually marked using flipper bands. Banding stopped in

1988, but banded birds have been recorded since then. We

limit our analysis to the period before 2000 because too few

marked birds were seen after that to permit estimation.

The life cycle and the demographic model

Emperor penguins breed on motionless sea ice (i.e. fast ice)

during the Antarctic winter. They arrive at the colony some-

time in late March to early April while sea ice is thickening,

and leave the colony in late December before the ice breaks

up. The colony site is usually far from the ocean, and during

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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the breeding season emperor penguins travel long distances to

feed in ice-free areas, such as polynyas, within the sea ice

cover. They feed on fish (mainly Pleuragramma antarcticum),

crustaceans (mainly Euphausia superba and amphipods), and

squid (mainly Psychroteuthis glacialis) (Kirkwood & Robertson,

1997; Cherel & Kooyman, 1998; Cherel, 2008). The female lays

a single egg in May, which is then incubated by the male for

2 months while the female leaves the colony to feed. Females

return when chicks hatch around July, and both parents take

turns feeding the chick until fledging in December.

Our demographic model is described in detail in Jenouvrier

et al. (2010). It is a stage-classified matrix population model

with a projection interval of 1 year, but the annual projection

is based on four seasonal steps. The model has five stages:

male and female pre-breeders (birds that have yet to breed for

the first time), breeding pairs, and male and female nonbree-

ders (birds that have bred before but do not do so in the cur-

rent year). The formation of pairs is a nonlinear function of the

operational sex ratio.

Our model does not include density dependence

because we expect small density effects in this population

relative to effects of environmental variations, and especially

sea ice (Supplementary Appendix S1, Herrando-Pérez et al.,

in press).

The annual population projection depends on the vital rates:

the probability that an individual of a given stage returns to

the breeding site, the probability of mating as a function of the

availability of potential mates, breeding success (probability

that a breeding pair raises offspring given the female lays an

egg), the primary sex ratio (fixed at 0.5), the survival of off-

spring during the first year at sea, and the annual survival of

pre-breeders, nonbreeders, and male and female breeders.

We divide the year into four seasons: (1) the nonbreeding

season from January to March, (2) the arrival, copulation and

laying period (April–May), hereafter called the laying period, (3)

the incubation period (June–July) and, (4) the rearing period

(August–December).

Sea ice variables

Many components of the sea ice environment affect penguins

in various way. To avoid examining the effect of all possible

factors on vital rates and to untangle the networks of causa-

tion among them, we examine the covariation among several

factors selected on the basis on the emperor penguin

responses to climate [i.e. fast ice area and polynya area indi-

ces, sea ice concentration (SIC), and sea ice extent (SIE), see

Ainley et al., 2010 for a comprehensive review]. All these vari-

ables are strongly correlated (Supplementary Appendix S2)

and we focus our analysis on SIC, including the seasonality in

SIC because it drives the emperor penguin life cycle.

Sea ice concentration is the fraction of area covered by sea

ice. Observed values of SIC from 1979 to 2007 were obtained

from passive microwave satellite imagery provided by the

National Snow and Ice data Center, using the NASA Team sea

ice algorithm (see Cavalieri et al., 1996 and http://nsidc.org/

data). Forecasts of SIC from climate models were extracted

from 20 models available as part as the WCRP CMIP3 multi-

model dataset from 1900 to 2100 (see Meehl et al., 2007 and

http://esg.llnl.gov/portal).

To link population models to the output of GCMs, which

use relatively coarse spatial grids (100–200 km resolution), we

use observed values of SIC over similarly large spatial scales.

We averaged SIC, both observed and simulated, over a large

sector centered on the colony. This sector included a 20° span
in latitude, between longitudes 130°E and 150°E during the

breeding season, and between longitudes 120°E and 160°E
during the nonbreeding season. This includes the maximum

foraging distances from the colony, of about 100 km during

the breeding season and at least 650 km during the nonbreed-

ing season (Zimmer et al., 2008).

As a variable to describe the sea ice conditions, we use the

proportional anomalies in SIC, relative to the mean from 1979

to 2007. We denote this variable as SICa, and calculate it for

each of the four seasons (Fig. 1). We estimated the vital rates

as functions of the observed seasonal SICa (see following sec-

tion), and used forecasts of seasonal SICa to project future

population trajectories (last section). However, to provide a

comprehensive understanding of the effect of seasonal SICa on

vital rates and population growth rate, we present our results

as functions of ‘annual sea ice’ and ‘seasonal difference in sea

ice’, two variables that accounted for most of the variability in

the four seasonal SICa variables (Fig. 2, S2). Annual sea ice is a

weighted mean of seasonal SICa over the year. The seasonal

difference in SICa is the difference between ice concentration

in the nonbreeding season and its weighted average over the

combined incubation and rearing seasons. The contribution of

SICa variations during the laying season to the seasonal SICa

difference variations is small. Thus, positive values of the sea-

sonal SICa difference correspond to years with positive SIC

anomalies in the nonbreeding season and negative SIC anoma-

lies in the incubating and rearing seasons.

Relationships between sea ice and vital rates

Sea ice concentration affects emperor penguin vital rates

through various mechanisms, which are not mutually

exclusive; see review by Ainley et al. (2010). First, SIC may

Fig. 1 Observed proportional anomalies in sea ice concentra-

tion (SICa) relative to the mean from 1979 to 2007, for each of

four seasons of the penguin life cycle. The gray line shows

SICa = 0 and represents the mean SIC from 1979 to 2007.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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directly affect foraging; in years with dense sea ice cover, for-

aging trips to the nearest open water area are on average

longer, energetic costs for breeding adults are higher, and the

provisioning of chicks is lower (Zimmer et al., 2008; Massom

et al., 2009). We would thus expect negative effects of high

SICa on breeding success and on adult survival of both sexes

during the rearing period.

Sea ice concentration is also critical to Antarctic ecosystem

function (Thomas & Dieckmann, 2003). It may indirectly affect

the emperor penguin through its effects on other species of

the Antarctic food web, either prey or predators (Barbraud &

Weimerskirch, 2001; Ainley et al., 2007, 2010; Barbraud &

Cotte, 2008; Forcada & Trathan, 2009). However, the mecha-

nisms involved remain unclear and their relative importance

is still debated (Ainley et al., 2007; Barbraud & Cotte, 2008).

The effects of SIC on primary productivity and krill may cas-

cade up to fish and upper predators; e.g. Nicol et al. (2000); For-

cada & Trathan (2009); Fraser & Homann (2003). Primary

productivity and krill density are known to be related to SIE

and concentration (Loeb et al., 1997; Brierley et al., 2002; Atkin-

son et al., 2004). Around Antarctica, krill density during

summer is positively related to chlorophyll concentrations

(Atkinson et al., 2008). In the South West Atlantic, krill densities

and recruitment during summer are positively related to SIE of

the previous winter (Loeb et al., 1997; Nicol et al., 2000; Atkin-

son et al., 2004). Other studies have shown nonlinear relations

between sea ice cover and krill populations (Quetin et al., 2007;

Wiedenmann et al., 2009). High krill recruitment occurs over a

range of optimum sea ice conditions, suggesting complex

mechanisms linking sea ice and krill abundance.

Sea ice may also influence the emperor penguin by top-

down processes (Ainley et al., 2007, 2010). Reduced sea ice

cover may allow greater access to the foraging areas of the

emperor penguin by potential predators such as killer whales

(Orcinus orca) (Ainley et al., 2007, 2010; Pitman & Durban,

2010), although no emperor penguin remains have been

detected in the diet of killer whales (Barbraud & Cotte, 2008).

Energetically compromised penguins (especially males after

their 4 months fast) may be particularly vulnerable to preda-

tion (Ainley personal communication).

Parameter estimation

The capture-recapture dataset permits the estimation of sur-

vival and return probabilities (see Jenouvrier et al., 2005a, 2010

for more details), which may differ between males and

females because of their different breeding investment (Barb-

raud & Weimerskirch, 2001; Jenouvrier et al., 2005a). We esti-

mated probabilities of survival, and of return to the breeding

colony, using a multistate capture-mark-recapture model

(CMR) based on sex and reproductive status, with some unob-

servable stages. Adult survival is allowed to differ between

sexes, and return probability to differ between breeders and

nonbreeders. The statistical capture-recapture model is

described in detail in Appendix C of Jenouvrier et al. (2010);

for a review of these methods see Lebreton et al. (2009).

We estimated linear and quadratic effects of SICa using

models relating the vital rates to covariates with a general logit

link function (Lebreton et al., 1992). It is impossible to test the

impact of SICa on survival during the first year at sea, or on the

survival or return probabilities of pre-breeders, because data

on pre-breeders and SICa overlap for only a few years (modern

SIC satellite data are only available from 1979 onward).

Estimation and CMR model selection was performed using

the program M-SURGE (Choquet et al., 2004). We used Ak-

aike’s information criterion (AIC, Akaike 1974) to compare

models, the model with the lowest AIC being the model most

supported by the data. We based our inferences on the most

plausible set of models using model averaging using AIC

weights wi (Burnham & Anderson, 2002). Thus, a parameter h
is calculated as

h ¼ logit�1
XM
i¼0

wibi

 !
ð1Þ

where M is the number of models and bi is the estimated

parameter on the logit scale for model i. The Akaike weights

were calculated as

wi ¼ expð�Di=2ÞPM
r¼0

expð�Dr=2Þ
ð2Þ

where Δi = AICi � min AIC, where min AIC is the smallest

value of AIC in the model set.

Concerns have been raised that the use of flipper bands neg-

atively affects the survival and breeding success of other spe-

cies of penguins (Saraux et al., 2011). The banding study at

Terre Adélie was discontinued in 1988 partly out of such con-

cerns. However, the breeding success of banded and unbanded

emperor penguins at Terre Adélie is not significantly different

(C. Barbraud, unpublished results). Saraux et al. (2011) found

that the effects of bands on survival of king penguins disap-

peared 4.5 years after banding. To reduce possible impacts of

the flipper bands, but still to retain sufficient sample size, we

eliminated capture histories for the first 2 years after banding.

Circumstantial evidence that the possible effects of bands are

minimal in this population comes from estimates of population

growth rate. If the banded birds on which CMR estimates are

based had lower survival probabilities, we would expect esti-

mated population growth rates to be consistently lower than

those observed. This is not the case: the population growth rate

obtained from CMR estimates agrees well with the observed

population growth rate (Jenouvrier et al., 2010).

To quantify uncertainties resulting from model selection

and estimation error, we used the parametric bootstrap

Fig. 2 (a) Seasonal SIC anomalies (color lines, see legend) as a

function of the annual SICa, with the seasonal differences in

SICa set to zero. (b) Seasonal SIC anomalies as a function of the

seasonal differences in SICa, with the annual SICa set to zero.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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procedure introduced by Regehr et al. (2010) and Hunter et al.

(2010). To generate a bootstrap sample of a model output in

this procedure, a CMR model is first selected with probability

proportional to its AIC weight. Then a vector of parameter

values is drawn from a multivariate normal distribution with

a mean equal to the estimated parameter vector and a

covariance matrix obtained from the Hessian matrix of the

CMR model, or from the logistic regression model in the case

of breeding success. The resulting parameter vector is used to

create the population model, and the output calculated from

that model. This process is repeated to generate a bootstrap

sample, from which confidence intervals can be calculated

using the percentile method.

Results

Supplementary Appendix S3 details some of the results

outlined here, including the underlying parameter

estimates and their uncertainties.

Breeding success is a decreasing function of SICa

during the rearing period (Fig. 3). The CMR model

selection procedure reveals effects of SICa on adult sur-

vival of both sexes during all four seasons (Table 1).

The models with ΔAIC � 4 include effects in all

seasons, those with ΔAIC � 3 include effects in the

laying, incubation, and rearing seasons, and those with

ΔAIC � 2 include effects during the incubation and

rearing seasons. There was no support for effects of

SICa on the probability of return to the breeding

colony (S3).

Figure 4 shows adult survival as a function of annual

SICa and seasonal differences in SICa. Survival proba-

bility is a concave nonlinear function of annual SICa

(Fig. 4a and b). The maximum annual adult survival is

higher for females than for males (0.96 and 0.93, respec-

tively). The effect of seasonal differences in SICa (Fig. 4c

and d) is small compared to the effect of annual SICa,

but it has an important effect on the difference between

male and female survival. The effect of seasonal differ-

ences are positive when annual SICa < 0, and negative

when annual SICa > 0.

Influence of sea ice on population growth

To assess the effect of sea ice conditions on population

growth, we use a demographic model in which the

Fig. 3 Breeding success as a function of proportional anomalies

in SIC during the rearing season. The line is a logistic regression

fit to the data points shown.

Table 1 Results of model selection for annual adult survival,

including linear or quadratic effects of SICa at each of four sea-

sons: nonbreeding, laying, incubating, and rearing. The first

and second columns give the effects included in the model for

females and males, respectively. The number of parameters in

the model is K, ΔAIC is the difference in Akaikes information

criterion (AIC) between each model and the model with the

smallest AIC (i.e. best supported by the data). AIC weights

represent the relative likelihood of a model and are used to

create the averaged model; only models for which the cumula-

tive sum of AIC weights is 0.98 are included

Effect for females Effect for males K ΔAIC AIC weight

incubating incubating 135 0.00 0.14

rearing2 rearing2 137 0.78 0.09

rearing2 incubating 136 1.17 0.08

incubating incubating2 136 1.25 0.07

rearing2 time-invariant 135 1.59 0.06

rearing2 incubating2 137 2.11 0.05

rearing time-invariant 134 2.22 0.04

rearing incubating 135 2.46 0.04

rearing laying 135 2.93 0.03

rearing2 rearing 136 3.53 0.02

time-invariant time-invariant 133 3.63 0.02

rearing rearing2 136 3.71 0.02

incubating time-invariant 134 3.73 0.02

rearing nonbreeding 135 3.94 0.02

rearing2 laying 136 4.00 0.02

rearing rearing 135 4.12 0.02

incubating rearing2 136 4.13 0.02

incubating rearing 135 4.14 0.02

rearing incubating2 136 4.15 0.02

rearing incubating2 136 4.15 0.02

rearing2 nonbreeding 136 2.97 0.03

time-invariant incubating 134 4.46 0.01

laying incubating 135 4.52 0.01

incubating2 incubating2 137 4.62 0.01

incubating laying 135 4.81 0.01

time-invariant nonbreeding 134 4.99 0.01

laying time-invariant 134 5.25 0.01

time-invariant rearing 134 5.25 0.01

incubating nonbreeding 135 5.49 0.01

incubating rearing2 136 5.50 0.01

laying incubating2 136 5.75 0.01

time-invariant incubating2 135 5.88 0.01

nonbreeding time-invariant 134 6.02 0.01

incubating2 rearing2 137 6.10 0.01

time-invariant laying 134 6.31 0.01

laying rearing2 136 6.34 0.01

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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parameters are functions of SICa. Because sea ice is

strongly seasonal and breeding biology is tied to the

seasons, we use a seasonal periodic matrix model

(Caswell, 2001; Chap. 13) to capture these effects. The

model, which is described in detail in Jenouvrier et al.

(2010), includes a sequence of seasonal behaviors (arri-

val to the colony, mating, breeding) and accounts for

differences in adult survival between males and

females. The model is nonlinear because mating proba-

bility depends on the availability of males and females

for mating. This frequency dependence is captured by

expressing reproduction as a function of the propor-

tional structure of the population.

In the model, a matrix Mi projects the population

from season i to season i + 1. Since we identify four

seasons, M4 projects the population from season 4 to

season 1 in the next year. The annual projection matrix

is given by the periodic product of the Mi:

A ¼ M4M3M2M1: ð3Þ
where M1 includes the birth process, M2 includes

annual mortality process, M3 includes migration to the

breeding site, and M4 includes the mating process (Je-

nouvrier et al., 2010).

To establish clear notation, let x(t) represent the

SICa values (in all four seasons) in year t, and let p(t)

be the proportional population structure in year t.

The vector of demographic parameters is a function

of sea ice and population composition; we denote it

by h(x, p). Then the population in year t grows

according to

nðtþ 1Þ ¼ A hðxðtÞ;pðtÞÞ� �
nðtÞ ð4Þ

Deterministic population growth

In a fixed, specified sea ice environment, the population will

eventually converge to an equilibrium proportional structure

p̂ and (even though it is nonlinear) grow exponentially at a

rate k̂ given by the dominant eigenvalue of the projection

matrix evaluated at the equilibrium structure, A½hðx; p̂Þ�. To
compute p̂we calculate SICa, during each of the four seasons,

from the annual SICa and the seasonal differences in SICa.We

then project the population from an arbitrary initial vector

until it converges to the equilibrium structure, and use that

structure to compute k̂.
Figure 5 shows k̂ as a function of annual SICa and of

seasonal differences in SICa. The population growth

rate is maximized at intermediate values of SICa close

to 0, and declines at higher or lower values. For a fixed

value of SICa, the population growth rate increases

(annual SICa < -0.8) or decreases (annual SICa > �0.3)

with increasingly positive seasonal differences. The

range of positive growth is wide (white contours on

Fig. 5) and k̂ declines from its maximum more rapidly

for negative than for positive annual SICa values.

Stochastic population growth

To examine the effect of sea ice variability, we calculate

the stochastic population growth rate as a function of

the means and variances of annual SICa and of seasonal

differences in SICa. The growth rates are calculated

from stochastic simulations. At each time step t, values

for annual SICa and seasonal differences in SICa are

drawn from normal distributions with specified means

and variances, and are used to parameterize the projec-

tion matrix A in Eqn (3). We also include stochastic var-

iation, unrelated to sea ice conditions, in breeding

success and the probability of return to the colony. For

breeding success, we add a normally distributed error

term with variance given by the residual variation

Fig. 4 Annual adult survival as a function of annual SICa and

seasonal differences in SICa. (a, c) and (b, d) show the survival

of females and males, respectively. Upper panels (a b) show sur-

vival as a function of annual SICa for negative (=�1, gray line),

zero (thick black line), and positive (=+1, dotted line) values of

seasonal differences in SICa. Lower panels (c, d) show survival

as a function of seasonal differences in SICa for negative (=�4,

gray line), zero (thick black line), and positive (=+4, dotted line)

values of annual SICa.

Fig. 5 The deterministic population growth rate (log k) as a

function of annual SICa and seasonal differences in SICa. The

white contours indicate log k = 0. The color bar shows the val-

ues of log k.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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around the logistic regression of breeding success on

SICa (Fig. 3). For probability of return, which is not a

function of SICa, we sample repeatedly from the set of

measured return probabilities from 1970 to 2000.

The simulation begins with an arbitrary population

vector n0, and projects the population according to

nðtþ 1Þ ¼ A hðxðtÞ;pðtÞÞ� �
nðtÞ: ð5Þ

The stochastic growth rate is given by

logks ¼ lim
T!1

1

T
logkA½hðT � 1Þ� � � �A½hð0Þ�pð0Þk ð6Þ

We evaluate log ks numerically using T = 50 000.

Figure 6 shows the results and Appendix S4 provides

more details on the distribution of sea ice, vital rates

and population growth rate for various examples. The

stochastic growth rate is maximized at intermediate

values of mean annual SICa, and declines as anomalies

become very positive or very negative. At very high or

very low values of the mean annual SICa the growth

rate is improved by increasing variance, but at interme-

diate values, the effect of variance is negative. The

effect of the mean and variance in seasonal differences

in SICa are smaller, and negative. Changes in the mean

and/or the variance of annual SICa have the potential

to greatly reduce the stochastic growth rate.

Population response to climate change

To project the population response to climate change,

we use our demographic model to determine the

response of the population to future sea ice conditions

as forecast by a select set of GCMs. We obtain forecasts

of SICa from a set of GCMs, compute stochastic SICa

forecasts from these, and use the results to generate

population trajectories from 2000 to 2100.

Stochastic sea ice forecasts

GCMs differ in their ability to reproduce sea ice condi-

tions in Antarctica. Thus, from an initial set of 20 cli-

mate models (Table 2), we selected those for which the

statistical properties of the distribution of SICa output

agree well with the observations from 1979 to 2007, in

terms of both the median and the standard deviation of

the SICa distribution (see S5 for details). From the

original set of 20 climate models, five were selected:

Fig. 6 The stochastic population growth rate log ks as a func-

tion of the mean and variance of sea ice variables. (a) log ks as a
function of the mean and variance of annual SICa with seasonal

differences in SICa set to zero. (b) log ks as a function of the

mean and variance of seasonal differences in SICa, with annual

SICa equal to zero. The black line stands for a zero variance, the

gray line for the observed variance, and the dotted line for a

variance equal to twice the observed.

Table 2 Selection of General Circulation Models for climate.

Each model was evaluated by comparing the statistical prop-

erties of its sea ice output to observed data from 1979–2007.

Agreement is indicated by an x; the GCMs selected are shown

in bold

Model

Non

breeding Laying Incubating Rearing

bccr-bcm2-0

cccma-cgcm3-1 x x x x

cccma-cgcm3-1-t63 x x x x

cnrm-cm3 x x

csiro-mk3-0 x x

gfdl-cm2-0 x x

gfdl-cm2-1 x

giss-aom x x x

giss-model-e-r

iap-fgoals1-0-g

inmcm3-0

ipsl-cm4 x x

miroc3-2-hires x x x

miroc3-2-medres x x x

miub-echo-g

mpi-echam5 x x x x

mri-cgcm2-3-2a x

ncar-ccsm3-0 x x x

ukmo-hadcm3 x x x x

ukmo-hadgem1 x x x x

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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cccma-cgcm3-1, cccma-cgcm3-1-t63, mpi-echam5, ukmo-

hadcm3, and ukmo-hadgem1 (Table 2, see Figure in

Appendix S5).

These climate models were forced with a middle

range emissions scenario (SRES A1B, IPCC, 2000). This

scenario assumes a future socio-economic development

depending on fossil and nonfossil energy sources in

balanced proportions. Under this scenario, the CO2

level doubles by 2100, from 360 to 720 ppm.

To generate stochastic SICa forecasts, we first obtain

output for SICa in each of the four seasons. From this

output, we compute smoothed means �xðtÞ and

smoothed covariance matrices �CðtÞ, using a Gaussian

kernel smoother with smoothing parameter h = 2

(Appendix S5). We then generate stochastic SICa vec-

tors by drawing x(t) as an iid sample from a normal dis-

tribution with mean �xðtÞ and covariance matrix �CðtÞ.
All five GCMs agree that the smoothed mean SICa will

decline by 2100, but the rate of decline varies between cli-

mate models and seasons (Fig. 7). For example, SICa dur-

ing the laying season is forecast to decline only by 9%

relative to present for the model ukmo-hadcm3, while

SICa during the nonbreeding season will decline by 71%

according to the model cccma-cgm3-t63. There is no clear

pattern of change in the smoothed variance (Fig. 8), but a

high variability over time and between models seems

likely. Some models predict a decline in the smoothed

variance by the end of the century (e.g. cccma-cgm3-t63

during the nonbreeding season), while others an increase

(e.g. ukmo-hadcm3 during the laying season).

Stochastic population projections

We used each stochastic SICa forecast to generate a

sequence of demographic rates from 2010 to 2100

(Appendix S6). These rates were used to project the

population using as an initial population vector the

average equilibrium population structure from all the

GCMs in 2010. To evaluate uncertainties in climate, we

used 200 stochastic forecasts from each of the five

GCMs. To evaluate uncertainties in demography, we

use the parametric bootstrap approach to generate a

sample of 200 simulations for each sea ice forecast.

Thus, we project 40 000 population trajectories for each

GCM, for a total of 200 000 population trajectories.

The population projections exhibit considerable vari-

ability (Fig. 9). Some projections produce dramatic

declines in the number of breeding pairs (e.g. projec-

tions from cccma-cgcm3-1), whereas a few produce

large increases (e.g. ukmo-hadcm3). The median of the

40 000 trajectories from each GCM has a unique pattern

(Figs 9 and 10). Some increase gradually (e.g.

mpi-echam 5), while some decline gradually (e.g.

ukmo-hadgem1). Some remain stable for a while and

then decline (e.g. cccma-cgcm3-1-t63). For each GCM,

however, there exists a year beyond which the median

projection declines; this tipping year may be late (e.g.

2089 for ukmo-hadcm3) or early (e.g. 2038 cccma-

cgcm3-1-t63). By the end of the century, the medians of

all GCMs except ukmo-hadcm3 project that the number

of breeding pairs will decline compared to the mini-

mum number over the last six decades.

The median over the entire set of simulations

declines to 575 breeding pairs by 2100. Over this set of

simulations, the probability of a decline by 90% or more

by 2100 is 0.43 (Table 3). By 2100, the probability of a

Fig. 7 (a) Smoothed mean of SICa during the four seasons, from

each of the five selected GCMs (color lines, see legend). The

black line shows the observed SICa from 1979 to 2007 and the

red line shows the zero value, i.e. represents averaged SIC from

1979 to 2007.

Fig. 8 Smoothed standard deviation of SICa during the four

seasons, from each of the five selected GCMs (color lines, see

legend on Fig. 7). The red line shows the observed standard

deviation. The gray box represents 0.5 and 1.5 times the

observed standard deviation; these values were used in select-

ing climate models (Appendix S4).

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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decline below the maximum number of breeding pairs

ever observed in Terre Adélie since 1962 is 93%

(Table 4). Therefore, only 7% of population trajectories

included in this set are projected to increase by 2100.

Discussion

If the climate during the rest of this century follows the

patterns forecast by the GCMs examined here, the

emperor penguin population at Terre Adélie will

respond by declining toward extinction. Our median

projection shows a decline in the number of breeding

pairs by 81% over this period, and a good chance (43%)

of a more severe decline of 90% or more. By the end of

our projection, the population is continuing to decline,

regardless of which GCM is used to forecast future sea

ice conditions. The range of uncertainty associated with

this result might change the details, but not the overall

biological conclusions.

We arrived at this conclusion by tracing the effects of

SIC from the level of the individual to the level of the

population. First, we measured the response of the vital

rates to sea ice conditions, then incorporated those

responses into a demographic model to calculate the

population growth, and finally we coupled the demo-

graphic model to forecasts of sea ice conditions pro-

duced by an ensemble of GCMs.

Effects of sea ice on the vital rates

The vital rates consist of male and female adult sur-

vival, the probability of returning to the colony to

breed, and breeding success. Previous studies have

shown that breeding success and adult survival have

the biggest impacts on population growth rate, and that

return probability has only a small effect (Jenouvrier

et al., 2005a, 2009a).

We found that breeding success declines with increas-

ing values of SICa during the rearing season. Years with

high concentration sea ice may require longer foraging

trips, reducing the provisioning of chicks and thus

breeding success (Wienecke & Robertson, 1997; Massom

Fig. 9 Projections of the emperor penguin population based on SICa forecasts from an ensemble of five GCMs. The black line gives the

observed number of breeding pairs from 1979 to 2010. For each GCM, three random population trajectories are shown (thin colored

lines), along with the median (thick colored line) and the 95% envelope (gray area), from 40 000 stochastic simulations. The median

and 95% envelope are also shown from the combined 200 000 simulations for the set of 5 GCMs.

Fig. 10 Summary of the projections of the emperor penguin

population based on SICa forecasts from an ensemble of five

GCMs. The thick colored lines (see legend on Fig. 9) give the

median and the gray area is the 95% envelope from the com-

bined 200 000 simulations for the set of 5 GCMs. Also shown

are the probability density functions for simulated population

size in 2100, for each GCM.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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et al., 2009). Not all the variability in breeding success is

explained by SICa during the rearing season, probably

because it is affected by many factors; e.g. prolonged

blizzards and colder temperatures may increase chick

mortality (Jouventin, 1975), and premature ice break-

out may cause massive fledging failures (Budd, 1962).

We include this unexplained variability in our sea

ice-dependent demographic model.

Sea ice affects adult survival in several ways, more

complicated than the linear relationships assumed in

previous studies (Barbraud & Weimerskirch, 2001;

Jenouvrier et al., 2005a). The effect of annual SICa on

adult survival is greater than the effect of seasonal dif-

ference in SICa. Adult survival is maximized at positive

annual SIC anomalies ≃ 2 and declines otherwise. The

maximum annual survival is higher for females than

males because males are likely more constrained

energetically due to their long fasting period (Jenouvri-

er et al., 2005a). Males incubate the egg, and thus fast

for four consecutive months, whereas females return to

open water to forage after a 2 months fasting period.

The response of survival to sea ice can be explained by

several non-exclusive mechanisms affecting sea ice hab-

itat and constraining the energy expenditure of

emperor penguins. During years of concentrated sea

ice, foraging trips may be longer, resulting in higher

energetic costs (Wienecke & Robertson, 1997; Massom

et al., 2009). On the other hand, during years of concen-

trated sea ice, food resources may be higher (Barbraud

& Weimerskirch, 2001) and/or predation lower (Ainley

et al., 2007). Seasonal difference in SICa affects the sur-

vival difference between females and males, suggesting

that the sexes respond differently to SICa during the

different seasons. Although the mechanisms remain

unclear, this difference is probably linked to contrasted

energetic costs during breeding.

Male-female survival differences affect the popula-

tion structure and growth, directly through mortality or

indirectly by limiting the availability of mates, and thus

reproduction, because penguins are monogamous

(Jenouvrier et al., 2010).

Effect of sea ice on population growth rate

Population growth rate provides a measure of the

quality of the environment, in terms of the fitness of a

population occupying that environment (Caswell,

2001). The largest effect of sea ice on the population

growth of the emperor penguin is due to the annual

SICa; the effects of seasonal differences are smaller, but

still appreciable.

The deterministic growth rate k is maximized at inter-

mediate values of annual SICa. The maximum occurs at

a value of SICa � 0 (depending slightly on the value of

the seasonal difference in SICa). The optimum is rela-

tively broad, as shown by the wide range of annual SICa

values enclosed by the contours for log k = 0 in Fig. 5.

This implies that changes in sea ice conditions have little

effect on k until annual SICa becomes quite positive or

negative. This intermediate optimum is expected

because neither complete absence of sea ice, nor heavy

and persistent sea ice (i.e. no access to resources through

polynya) would provide satisfactory conditions for the

emperor penguin (Ainley et al., 2010).

A complicated interaction exists between annual SICa

and seasonal differences in SICa. When annual SICa is

lower than �0.8 the effect of seasonal differences is posi-

Table 3 Probability that the emperor penguin population in

Terre Adélie will decline by more than 90% from 2010 to 2040,

2060, 2080, and 2100, when sea ice follows the forecasts of each

of the five climate models selected

Models 2040 2060 2080 2100

cccma-cgcm3-1 0.0168 0.2366 0.7625 0.9903

cccma-cgcm3-1-t63 0 0.0205 0.6783 0.9997

ukmo-hadcm3 0 0 0 0.0001

ukmo-hadgem1 0 0.0001 0.0088 0.1276

mpi-echam5 0 0 0 0.0181

Entire set 0 0.0514 0.2899 0.4272

Table 4 Probability that the emperor penguin population in Terre Adélie will decline below a specific number of breeding pairs

(threshold) by 2100, when sea ice follows the forecasts of each of the five climate models selected. Thresholds are based on the mini-

mum and maximum number of observed breeding pairs (N obs) during specific time periods (3 first columns), or specific numbers

(last two columns)

Threshold min(N obs1979–2010): 2303 max(N obs1979–2010): 3482 max(N obs1962–2010): 6236 8000 10000

cccma-cgcm3-1 1.00 1.00 1.00 1.00 1.00

cccma-cgcm3-1-t63 1.00 1.00 1.00 1.00 1.00

ukmo-hadcm3 0.21 0.43 0.77 0.87 0.93

ukmo-hadgem1 0.94 0.98 1.00 1.00 1.00

mpi-echam5 0.75 0.90 0.99 1.00 1.00

Entire set 0.75 0.84 0.93 0.96 0.98

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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tive (i.e. the emperor penguin performs better when SIC

is higher in breeding season and lower in nonbreeding

season). But, when annual SICa is higher than �0.3, the

effect of seasonal differences is negative; the emperor pen-

guin does betterwhen the seasonal pattern is the opposite.

The emperor penguin population is more sensitive

to negative than to positive annual sea ice anomalies;

i.e. k decreases from its optimal value faster in the neg-

ative than the positive direction (Fig. 5). This is well

illustrated by the dramatic 50% population decline in

the late 1970s in Terre Adélie, which coincided with

several years of the lowest sea ice extent ever recorded

during the last 40 years (Jenouvrier et al., 2005c). Other

colonies have disappeared in regions with high tem-

perature and low sea ice duration (Fretwell & Trathan,

2009; Trathan et al., 2011). The Dion Islets colony along

the west coast of the Antarctic Peninsula (67°52′S, 68°
43′W) declined from 250 breeding pairs in the 1970s to

20 pairs in 1999, and was extinct by 2009 (Ainley et al.,

2010; Trathan et al., 2011). This extinction coincided

with a decline in sea ice duration, resulting from a

warming of the west coast of the Antarctic Peninsula

at an unprecedented rate (Vaughan et al., 2001).

The stochastic population growth rate log ks shows a

similar response to mean annual SICa, with a broad

maximum when the mean annual SICa � 0. The effect

of mean seasonal difference in SICa is smaller and, as in

the deterministic case, is negative when evaluated at a

mean annual value of SICa = 0 (Fig. 6).

The effects of the variance in annual SICa depend on

the value of the mean annual SICa, as shown in Fig. 6a.

Within the range of approximately �3 � SICa � 4,

the effect of variance is negative, and log ks is maxi-

mized when the variance is zero. But for mean annual

SICa outside this range, the effect of variance on log ks
is positive.

It is well known that, all else being equal, temporal

variance in the vital rates reduces the stochastic growth

rate; covariances among vital rates and temporal

autocorrelation can reverse this conclusion (Lewontin

& Cohen, 1969; Tuljapurkar, 1990; Caswell, 2001). How-

ever, this conclusion does not translate directly to the

effect of variance in environmental factors. Because the

vital rates are a nonlinear function of sea ice, and the

two-sex model is itself nonlinear, the effect of environ-

mental (i.e. SICa) variance on population growth may

be either positive or negative (e.g. Koons et al., 2009).

Effect of future sea ice change

Our best projection of the future growth of the Terre

Adélie emperor penguin population, under the impact

of climate change, is a decline by the year 2100 from

approximately 3000 breeding pairs to 575 breeding

pairs, a decline of 81%, or an average rate of change of

�0.018 per year. This projection is the median of a large

set of simulations that incorporate as many sources of

uncertainty as possible.

The median is a smoothed pattern based on 200 000

population trajectories. Each of those trajectories fluctu-

ates, with increases, decreases, and periods of relative

stability, until it reaches a tipping year, after which it

declines. The tipping year varies among trajectories,

depending on the forecast sea ice, the responses of the

vital rates, and the impact of sex-specific adult survival

on the demography. The decline in the median of the

200 000 population trajectories accelerates after 2040

because more of the population trajectories are likely to

have reached their tipping year as time goes on.

These population projections required three steps.

1 We had to extract the biologically relevant GCM

outputs, in our case the seasonal SICa values, on

appropriate spatial scales. The choice of spatial

scales is an important issue in studies of climate

change using GCMs, which project sea ice variables,

such as concentration, thickness (SIT), and extent,

over a greater spatial scale than the scale of emperor

penguin habitat requirements. For emperor

penguins, the size of polynyas (Ainley et al., 2005),

sea ice thickness, area of fast ice (Massom et al.,

2009), the timing of ice breakup, and formation are

meaningful variables with respect to the life cycle

(see review in Ainley et al., 2010), but are measur-

able only at small spatial scales. By focusing on SIC

we hope to reduce the number of correlated covari-

ates (Grosbois et al., 2008). At large spatial scales,

SIC is strongly correlated to SIT and open water

area, and thus SIC is a good measure of the sea ice

environment experienced by penguins. Additional

climate research will be required to downscale the

sea ice projections of GCMs in Antarctica both spa-

tially

(e.g. RCMs) and temporally (e.g. daily data to

calculate the timing of ice breakup) as climate model

output is typically saved and available with a

monthly resolution.

2 We had to model temporal variance in SICa from the

GCM output. Ideally, this would be obtained from

multiple stochastic realizations of each GCM, but

such output does not exist. Thus, we obtained

smoothed temporal means, variances, and covari-

ances from the output, and used those to parameter-

ize variability in SICa at each time step. The forecasts

of smoothed temporal means and variances of SICa

differ strongly among climate models. Differences

are present in numerous aspects of the climate mod-

els, including their physical parameterizations and

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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spatial resolution. As such, it is difficult to attribute

differences in the projected sea ice change to a single

factor. However, as noted by Lefebvre & Goosse

(2008), numerous mechanisms do appear to play a

role. These include the influence of local simulated

climate conditions at the end of the 20th century,

aspects of the atmospheric Southern Annular Mode

response (e.g. Fyfe & Saenko, 2006), and changes in

the simulated response of the Southern Ocean circu-

lation. Although our climate model selection process

does reduce the uncertainty associated with the first

of these, differences in simulated feedbacks and

climate response will still play an important role.

This points to an additional need for climate model

development and enhancement.

3 It was critical to incorporate uncertainty in our

projections; a projection of an 81% decline without

an associated range of uncertainty would be useless.

Our uncertainty analysis included components from

the demographic parameters and their response to

sea ice conditions, including both sampling error

and the uncertainty due to model selection. We also

included uncertainty in future sea ice conditions by

using an ensemble of GCMs, chosen on the basis of

their agreement with past sea ice observations.

Figure 9 shows the variation among the models in

their forecasts of SICa, and Fig. 10 provides a power-

ful graphical summary of the resulting uncertainty

in population forecasts. Models cccma-cgcm3-1 and

cccma-cgcm3-1-t63 predict the most rapid declines,

with the population reduced to 20 or 11 breeding

pairs, respectively, by 2100. In contrast, model ukmo-

hadcm-3 makes more optimistic sea ice forecasts,

and projects an increase in the population by 2100.

Stochasticity and uncertainty naturally lead to signifi-

cant variation among projections of future emperor

penguin population growth. Among the 200 000 popu-

lation trajectories, there are some examples in which

the population does not decline, or even increaes, but

the central tendency is an unambiguous and serious

population decline of 81%. More important, the proba-

bility distributions of projected population size in 2100

show that declines are far more likely than increases or

stability. In addition, the median population trends pre-

dicted by all five GCMs during the last decade (2090–
2100), even the outlier ukmo-hadcm3, are negative.

Thus, the difference between climate models, i.e. uncer-

tainty in the sea ice forecasts, affects the timing of the

population median decline, but not whether that med-

ian decline occurs or not (Fig. 10).

The conclusion that the emperor penguin population

will decline dramatically by the end of this century

raises the issue of possible adaptation. Emperor

penguins might adapt to the new sea ice conditions or,

more likely, disperse to locations where sea ice

conditions are more favorable (see review Ainley et al.,

2010; Forcada & Trathan 2009 and discussion in

Trathan et al., 2011; Jenouvrier et al., 2009b). Future

studies should quantify potential refuges for the species

(but see Ainley et al., 2010) and consider potential evo-

lutionary responses. Thus, we encourage ecologists to

collect information on phenotypic traits and their

heritability.

The median projection of 575 breeding pairs in 2100

is close to the projection of �400 breeding pairs

obtained previously using a simpler modeling app-

roach (Jenouvrier et al., 2009a, 2009b). Consistencies

among population projections from different demo-

graphic and climate models increase confidence in the

assessment of the impact of climate change.

Methodological notes

Our approach to predicting and understanding the

effects of climate change requires the measurement of

effects of climate on individuals, the integration of those

effects into a demographic model, and the connection of

the demographic model to climate forecasts. Aspects of

this approach have been applied to some other species,

including seabirds (Barbraud et al., 2010; Wolf et al.,

2010), polar bears (Hunter et al., 2010), the oystercatcher

(van de Pol et al., 2010), and our previous analysis of the

emperor penguin (Jenouvrier et al., 2009b). In this study,

we have gone beyond these studies in several ways.

Because of the length and quality of the emperor pen-

guin dataset, in this analysis we were able to identify

detailed effects of sea ice on a seasonal basis through

the breeding cycle, and to include, for the first time, the

nonlinear effects of sex-specific mortality patterns using

a two-sex demographic model. In the case of the

emperor penguin, the extreme conditions of its breed-

ing cycle make the presence of both parents essential

for successful reproduction. Hence, sex-specific climate

effects are particularly important (cf. Jenouvrier et al.,

2010). In general, however, we expect that even in less

dramatic conditions, the different roles of the sexes

may often cause climate change impacts to differ

between males and females.

Because of the ability to extract relevant sea ice out-

put from the GCMs, we were able to include both sto-

chasticity and uncertainty, and to draw conclusions

about the projected fate of the Terre Adélie emperor

penguin population even in the face of that uncertainty.

Because climate models predict that both the mean and

variability of climate will change (Solomon et al., 2007),

it is important to include these stochastic effects.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02744.x
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Two factors not included in our models deserve

mention: density dependence and demographic

stochasticity. It is almost reflexive to ask about density

dependence in an analysis such as ours. This is a result

of exposure to simple scalar population models. In a

stage-structured population, especially in a highly sea-

sonal environment, and in which different stages

occupy vastly different environments during the course

of the year, population growth is never likely to be a

function of something as simple as ‘density’. In the case

of the emperor penguin, it is a priori unlikely that den-

sity has strong effects, and in Appendix S1, S3 we

describe our analysis of the effects of the number of

breeding pairs on the vital rates; we found no support

for these effects.

Demographic stochasticity refers to fluctuations aris-

ing from the random outcome of probabilities of

survival and reproduction, applied to individuals in a

population. It can be analyzed using multi-type branch-

ing process models (Chap. 15 of Caswell, 2001). De-

mographic stochasticity is unimportant in large

populations, but reduces the stochastic growth rate and

increases extinction probability in small populations.

As the emperor penguin population declines, demo-

graphic stochasticity will, at some point, become impor-

tant. In general, however, this requires population sizes

of only a few tens to a hundred individuals. To the

extent that demographic stochasticity becomes impor-

tant at the end of our simulations, our projections over-

estimate the persistence of the population.

We encourage additional collaborations between

ecologists and climatologists. The development of data

archive resources such as those provided by the

National Snow and Ice Data Center and the Program

for Climate Model Diagnosis and Intercomparison

(PCMDI) (Meehl et al., 2007) have allowed unprece-

dented access to observed and modeled climate data.

We believe that the participation of climatologists is

critical for selecting the most appropriate set of cli-

mate models, emissions scenarios, climate variables,

and the use of climate ensembles vs. single climate

outputs.

An important future step will be to incorporate evo-

lutionary responses. A theoretical framework to link

life history traits and population dynamics (eco-evolu-

tionary dynamics) is emerging (Kinnison & Hairston,

2007; Pelletier et al., 2009; Reed et al., 2010; Hoffmann

& Sgró, 2011), and studies of the potential evolutionary

responses to climate change and their population con-

sequences have recently been initiated (Jenouvrier &

Visser 2011; Reed et al., 2011). We believe that the way

climatologists have approached the problem, using

coupled climate system models in which climate

systems components (e.g. ocean, atmosphere, sea ice,

land surface, ice sheets, biogeochemistry, and more)

are gradually connected, can provide a valuable

example to ecologists toward an integrative climate-

eco-evolutionary framework.
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Appendix S3. Details vital rates estimation (model selection, estimates and 95% confidence intervals) for: (2.1) breeding success,
(2.2) adult survival, and (2.3) probabilities of return to the colony.
Appendix S4. Details the effect of sea ice variability on demography. Figures show the distributions of annual SICa, breeding suc-
cess, and male and female adult survival for females and males, along with the resulting distribution of the deterministic growth
rate k. This deterministic rate can be thought of as approximating the growth of the population between time t and t + 1, although
this is not always true (see Appendix).
Appendix S5. Shows the sea ice projected by each climate model for each season of the penguin’s life cycle and the climate selection
procedure (Section 4.1). It also details our novel approach to obtain stochastic sea ice forecasts from single climate output (Sec-
tion 4.2).
Appendix S6. Describes the projections of vital rates in the future and shows that the range of variation in the forecast vital rates
from 2010 to 2100 is plausible.
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