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Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic

climate because of specialized anatomical, physiological and behavioural

adaptations for minimizing heat loss. Heat transfer theory predicts that

metabolic heat loss in this species will mostly depend on radiative and con-

vective cooling. To examine this, thermal imaging of emperor penguins was

undertaken at the breeding colony of Pointe Géologie in Terre Adélie

(668400 S 1408 010 E), Antarctica in June 2008. During clear sky conditions,

most outer surfaces of the body were colder than surrounding sub-zero air

owing to radiative cooling. In these conditions, the feather surface will para-

doxically gain heat by convection from surrounding air. However, owing to

the low thermal conductivity of plumage any heat transfer to the skin sur-

face will be negligible. Future thermal imaging studies are likely to yield

further insights into the adaptations of this species to the Antarctic climate.

1. Introduction
Emperor penguins, Aptenodytes forsteri, experience one of the most severe

environments on Earth. It is the only species of bird breeding during the

Antarctic winter, where air temperature may reach as low as 2408C and

wind speed as high as 40 m s21 [1]. Males spend four months without feeding

during pairing and incubation. Their thermoneutral zone extends from 2108C
to þ208C, and during incubation core temperature is maintained around 36.98C
[1–3]. Emperor penguins are able to survive Antarctic conditions owing to

specialized anatomical, physiological and behavioural adaptations for minimiz-

ing heat loss [4]. Penguin plumage provides more than 80 per cent of total

insulation [5], and is highly resistant to wind penetration [6,7]. In most birds,

plumage is able to resist the flow of heat, such that surface temperature is nor-

mally a few degrees above ambient temperature [8]. However, under certain

conditions animal pelage can cool to below air temperature [9,10]. The aim of

this study was, therefore, to determine surface temperature variation in free ran-

ging emperor penguins, and to predict the direction and magnitude of heat

fluxes from different body parts. This will improve our understanding of the

effect of weather and climate on the energetics of this species.

2. Material and methods
Thermal imaging of emperor penguins was undertaken at the breeding colony of

Pointe Géologie, Dumont d’Urville, in Terre Adélie (668400 S 1408 010 E), Antarctica

from 4 June to 29 June 2008. A thermal imaging camera (P25 FLIR Systems) recorded
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infrared images, and digital photographs were also taken

(K10, Pentax) at a minimum distance of 10 m (figure 1a). Air

temperature, relative humidity and wind speed were recorded

at 1 min intervals and cloud cover (oktas, [11]) at 3 h intervals

at Dumont d’Urville meteorological station. Air temperature

Ta (8C) and wind speed, u (m s21) at the colony (height ¼ 1 m)

was adjusted from station readings Tmet and umet according to:

Ta ¼ 0.919 � Tmet and u ¼ 0.561 � umet [12].

Surface temperatures were obtained for 40 males that were

separated by at least one body length (figure 1b). Individuals
were selected that were stationary or shuffling (no feet exposed)

or walking slowly (feet seen). Mean surface temperature of

different body parts (dorsal, ventral, flipper, head and feet:

emissivity ¼ 0.98) was determined using image analysis software

(THERMACAM REPORTER v. 7.0 see [13]). Surface temperature of

surrounding ice (emissivity ¼ 0.97) was determined from three

spot measurements taken at one body length from the bird.

A heat transfer model was used to estimate the direction and

relative magnitude of heat fluxes from different body regions (see

the electronic supplementary material). Statistics were computed

using IBM SPSS v. 19.

3. Results
The mean air temperature + standard error was 217.6 +
0.718C, relative humidity 44.4 + 1.69%, cloud cover 1.5 +
0.15 oktas and wind speed 2.3 + 0.26 m s21. The mean temp-

erature of the ice was 229.1 + 0.118C. On 3 days when air

temperature was below 2208C, ice and sky temperature

over-ranged beyond 2458C (below the recording range

of the camera). The corresponding surface temperature of

dorsal, ventral, head, flippers and feet were 223.2 +
0.948C, 221.8 + 1.068C, 218.8 + 1.028C, 217.0 + 0.928C
and 216.8 + 1.318C, respectively. There was a significant

difference in surface temperature between different body

parts (generalized linear model, GLM F4,155 ¼ 9.78, p,
0.001). Dorsal and ventral surface temperatures were similar

(Tukey’s test p ¼ 0.95), but were significantly lower than the

surface temperature of head, flippers and exposed feet ( p �
0.01 in all cases). Close-up images revealed that almost all

the external body surfaces were below freezing, with the

exception of the eye region (figure 1c). Only the inner edges

of the upper and lower mandibles were around 108C above

air temperature, but outer regions were close to ambient.

Overall, the mean bill temperature was 217.3 + 1.178C and

was within 0.23 + 0.738C of air temperature.

The temperature gradient between plumage surface and air

temperature varied between different body parts (F4,156 ¼ 52.6,

p, 0.001, r2 ¼ 0.58). Mean dorsal and ventral surface tempera-

tures were 4–4.88C below ambient, whereas the head, flippers

and feet were 0.4–1.98C above air temperature (figure 2a).
A GLM was used to account for temperature variation of

each body part, where incubation status and activity (stationary

versus moving) were entered as factors. Time, air and ice temp-

erature, wind speed, and cloud cover were covariates. Relative

image size (number of pixels) was entered as a covariate to

account for measurement distance. There were only four incu-

bating birds that exposed their feet, and so incubation was not

included in this model. The above variables explained most of

the variance in surface temperature (partial h2 ¼ 0.87–0.94,

p, 0.001). Air temperature was the only significant explana-

tory variable for dorsal, ventral and head temperature, and

surface temperature was positively correlated with air tempera-

ture (h2 ¼ 0.37–0.60 p, 0.001 in all cases). However, flipper

and feet temperature were positively correlated with air temp-

erature (flipper: h2 ¼ 0.47, p, 0.001, feet: h2 ¼ 0.47, p, 0.007)

and negatively correlated with wind speed (flipper: h2 ¼ 0.37,

p, 0.04, feet: h2 ¼ 0.34, p, 0.03).

The heat transfer model (see the electronic supplementary

material) showed that radiative heat loss was greatest from the

body trunk 22.0 + 1.08 W, followedby head 2.6 + 0.10 W, flip-

per 2.3 + 0.07 Wand feet 0.15 + 0.03 W (figure 2b). Convective
heat losses for head, flipper and feet were small and averaged

1.4 + 0.44, 1.3 + 0.24 and 0.02 + 0.03 W, respectively. The

trunk surface was predicted to gain 23.1 + 2.16 W by convec-

tion from surrounding warmer air. Conduction from the feet

averaged 7.9 + 1.12 W and latent heat loss was constant at

4.0 W (figure 2b).
Assuming small convective heat gains are not transmitted

to the skin, total heat loss was estimated to be 41.6 + 1.75 W.

Total heat loss from the trunk, head, flippers and feet
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Figure 1. (a) Emperor penguin colony and thermal imaging (inset). (b) Ther-
mal image of isolated and huddling penguins (Tair ¼ 2 21.08C, RH ¼ 42%,
u ¼ 1.0 m s21 and cloud cover ¼ 0 oktas). (c) Close-up images of the head
and flippers (Tair ¼ 2 21.88C, RH ¼ 43%, u ¼ 3.0 m s21 and cloud
cover ¼ 2 oktas). (Online version in colour.)
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averaged 22.0 + 1.08, 4.0 + 0.52, 3.6 + 0.29 and 8.0+
1.16 W, respectively. Therefore, on average 50 per cent of

metabolic heat was lost from the trunk, 40 per cent from

head, flippers and feet together and 10 per cent through

latent heat loss.

4. Discussion
Infrared thermography provided a remote and non-invasive

temperature measurement well-suited to a species such as

the emperor penguin. Thick plumage has excellent insulation

and only unfeathered regions (feet, eye and bill) and sparsely

feathered flippers showed heat loss from the body interior.

Heat loss in penguins is minimized by counter-current heat

exchange systems through arterio-venous networks in the

head, axillae and legs. In particular, the post-orbital rete mir-
abile functions as a heat exchanger in the eye, nasal passages

and jaw muscles [14]. Emperor penguins have relatively small

bills in proportion to their body size, and small beaks have

been selected to minimize heat loss [15]. Surface temperature

of the pedal phalanges and webs were well below freezing.

However, their thick scaly skin affords good protection

from radiative cooling and contact with ice. Previously

tarsus temperature has been recorded to be a few degrees

above 08C [16,17].

The proximal edge of the flipper was relatively warm,

reflecting the fact that blood vessels here are less well

insulated [14,18,19]. However, the humeral arterial plexus is

particularly well adapted for the efficient redirection of heat

to the core. Among penguins, the emperor penguin has the

greatest number of arteries in this region, providing efficient

counter-current heat exchange [20].

Temperature is a function of the mean kinetic energy of

molecules in a system and determines the direction of heat

flux, whereas heat is a function of the total kinetic energy

of all molecules in a system. Temperature is, therefore, depen-

dent on the sum of heat fluxes at the surface. The radiative

temperature of the sky is 10–208C below air temperature

for an overcast and clear sky, respectively [11]. Therefore, in

this study, penguins were radiating to a sky in excess of

2408C (figure 1b). Thermographic measurements are usually

made where surroundings are at air temperature and, there-

fore, plumage is close to ambient [13]. Most emperor

penguin surfaces were lower than air temperature and well

below freezing. This phenomenon is due to extreme radiative

cooling of the surface, removing heat to the extent that the

internal energy of the system (temperature) is less than that

of air. Measurements on sheep exposed to a clear night sky

have shown the fleece to be at least 2.58C below air tempera-

ture. Experiments on pigeons, Columba livia, have recorded

temperature differences of 58C [9,10]. On a clear night, a

sheep’s fleece can accumulate water (and release latent

heat) by condensation when the fleece temperature drops

below the dew point of air [9]. Ice will form when the surface

cools below the frost point. In this study, the plumage was on

average just above frost point (224.28C) and no ice was seen

on feathers. Snow/ice on the backs of animals have however

been reported during blizzards [3].

The temperature variation of feathered regions was mostly

explained by air temperature alonewhile flipper and feet temp-

eratures were also dependent onwind speed.Wind is unable to

penetrate penguin plumage at low wind speeds, explaining the

fact that metabolic rate remains constant below 5 m s21 [1].

Measurements were made in relatively moderate conditions

for Antarctica in order to protect the camera. Free ranging

emperor penguins have a metabolic rate of around 1.5 W kg21

or 45 W for a 30 kg penguin [21]. Our heat transfer model

(see the electronic supplementarymaterial), therefore, provided

a realistic estimate ofmetabolic heat loss, and showed that radia-

tive heat loss dominated in clear and relatively calm conditions.

The trunk comprised 80 per cent of total surface area and more

than half of their metabolic heat production was lost largely

through radiation. Radiative cooling also occurred from the

head and flippers, contributing 10 per cent of heat loss from

each of these body parts. However, head and flippers were

important sites of heat exchange, as their radiative heat flux den-

sity was 63–65 Wm22 compared with only 47 Wm22 from the

well insulated trunk.

The cool trunk was predicted to gain around 20 W by

convective warming from the surrounding air. Although con-

vective heat transfer to the plumage surface will occur, it is

expected that little of this heat will reach the skin. Penguin plu-

mage has a low thermal conductivity [22] and even with strong

solar warming changes in avian skin temperature are minimal

[23,24]. Despite higher flipper and head temperature, their

estimated convective heat loss was small. In windy cloudy con-

ditions, we would expect the feather surface to be above air

temperature, leading to large convective heat losses if penguins

do not huddle [12]. Emperor penguins lost around 20 per cent

of their metabolic heat by conduction when they rested on both

feet. However, these higher rates of heat loss may be transient
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Figure 2. (a) Mean (+s.e.) temperature difference between surface (Ts) and
air (Tair) for different body parts of emperor penguins (n ¼ 40). Horizontal lines
indicate no significant (n.s.) difference between body regions. (b) Corresponding
surface heat fluxes from different parts of the body. Positive and negative
values represent heat loss and gain from the surface, respectively.
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while walking. By resting on their tarsometatarsus joint,

emperor penguins were predicted to reduce conduction to no

more than 5 per cent of metabolic heat loss, similar to minimum

rates of heat loss in other species [25]. In conclusion, thermal

imaging clearly showed that the surface temperature and

energy balance of emperor penguins is dependent on spatial

variation in their insulation and its interaction with environ-

mental conditions.

All procedures were approved by the Ethical Committee of the IPEV
(French Polar Institute Paul Emile Victor) and by the Scientific
Committee of the IPEV, following the Scientific Committee for
Antarctic Research Code of conduct.

Thanks to support of the Dumont d’Urville expedition members
in 2008, especially Luc Piard and Cyril Nahon who repaired the bat-
tery of the thermal imaging camera. Margaret Reilly, Hunterian
Zoology Museum kindly provided the penguin specimen for the
heat transfer model.
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